Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Optymalizacja rojem cząstek" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks
Autorzy:
Kowalski, Piotr A.
Słoczyński, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2055168.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fuzzy neural network
fuzzy flip-flop neuron
particle swarm optimization
training procedure
sieć neuronowa rozmyta
optymalizacja rojem cząstek
procedura szkoleniowa
Opis:
The aim of the presented study is to investigate the application of an optimization algorithm based on swarm intelligence to the configuration of a fuzzy flip-flop neural network. Research on solving this problem consists of the following stages. The first one is to analyze the impact of the basic internal parameters of the neural network and the particle swarm optimization (PSO) algorithm. Subsequently, some modifications to the PSO algorithm are investigated. Approximations of trigonometric functions are then adopted as the main task to be performed by the neural network. As a result of the numerical verification of the problem, a set of rules are developed that can be helpful in constructing a fuzzy flip-flop type neural network. The obtained results of the computations significantly simplify the structure of the neural network in relation to similar conditions known from the literature.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 577--586
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cross‐Comparison of Evolutionary Algorithms for Optimizing Design of Sustainable Supply Chain Network under Disruption Risks
Autorzy:
Al-Zuheri, Atiya
Powiązania:
https://bibliotekanauki.pl/articles/2023790.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
comparison
genetic algorithm
particle swarm optimization
sustainable supply chain design
disruption risk
porównanie
algorytm genetyczny
optymalizacja rojem cząstek
projektowanie zrównoważonego łańcucha dostaw
ryzyko zakłóceń
Opis:
Optimization of a sustainable supply chain network design (SSCND) is a complex decision-making process which can be done by the optimal determination of a set of decisions and constraints such as the selection of suppliers, transportation-related facilities and distribution centres. Different optimization techniques have been applied to handle various SSCND problems. Meta- heuristic algorithms are developed from these techniques that are commonly used to solving supply chain related problems. Among them, Genetic algorithms (GA) and particle swarm optimization (PSO) are implemented as optimization solvers to obtain supply network design decisions. This paper aims to compare the performance of these two evolutionary algorithms in optimizing such problems by minimizing the total cost that the system faces to potential disruption risks. The mechanism and implementation of these two evolutionary algorithms is presented in this paper. Also, using an optimization considers ordering, purchasing, inventory, transportation, and carbon tax cost, a numerical real-life case study is presented to demonstrate the validity of the effectiveness of these algorithms. A comparative study for the algorithms performance has been carried out based on the quality of the obtained solution and the results indicate that the GA performs better than PSO in finding lower-cost solution to the addressed SSCND problem. Despite a lot of research literature being done regarding these two algorithms in solving problems of SCND, few studies have compared the optimization performance between GA and PSO, especially the design of sustainable systems under risk disruptions.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 4; 342-351
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja położenia odwiertów wydobywczych ze względu na czas trwania plateau wydobycia
Well placement optimization for constant production rate
Autorzy:
Łętkowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/31348130.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
optymalizacja
symulacje złożowe
inteligencja roju
optymalizacja rojem cząstek
optymalna liczba odwiertów
optymalne położenie odwiertów
mapa potencjału produktywności
optimization
reservoir simulation
swarm intelligence
particle swarm optimization
optimal number of wells
optimal well placement
productivity potential map
Opis:
Określenie optymalnego rozmieszczenia odwiertów eksploatacyjnych na złożu węglowodorów jest kluczowe dla jego efektywnej eksploatacji. Tak sformułowane zagadnienie stanowi złożony problem optymalizacyjny, którego rozwiązanie w postaci lokalizacji odwiertów zależy między innymi od sposobu zdefiniowania funkcji celu. W literaturze najczęściej występują dwie postacie funkcji celu: zysk bieżący netto (NPV) oraz sumaryczne wydobycie ropy naftowej. Rzadziej spotykana jest funkcja celu bazująca na równomierności sczerpania złoża. Artykuł jest poświęcony próbie zastosowania funkcji celu opartej na czasie wydobycia ropy ze stałą wydajnością (tzw. plateau). Optymalizację prowadzono dla sumarycznego wydobycia ropy oraz zysku bieżącego netto w czasie trwania fazy plateau. W tym celu zbudowano hybrydowy algorytm optymalizacyjny bazujący na optymalizacji rojem cząstek. Zastosowanie algorytmu hybrydowego łączącego trzy mechanizmy wynikało z jednej strony z konieczności poprawienia skuteczności podstawowej metody optymalizacyjnej, z drugiej zaś miało na celu ograniczenie tzw. przedwczesnej zbieżności. Cele te zostały zrealizowane poprzez wykorzystanie mapy potencjału produktywności oraz wprowadzenie mechanizmu mutacji. Optymalizację prowadzono dla dwóch różnych sposobów sterowania odwiertami: sterowania grupowego ze stałą wydajnością oraz sterowania indywidualnego. Zbudowany algorytm potwierdził efektywność, uzyskując wzrost wartości funkcji celu w stosunku do wartości pierwotnej od 40% do 300%. We wszystkich analizowanych przypadkach algorytm rozmieścił odwierty produkcyjne poprawnie, co do zasady. Odwierty zostały rozmieszczone w strefie ropnej w bezpiecznej odległości zarówno od kontaktu woda–ropa, jak i ropa–gaz, przy czym stwierdzono pewne różnice w zależności od przyjętej funkcji celu. Przeprowadzone symulacje potwierdziły możliwość zastosowania czasu trwania plateau jako funkcji celu dla optymalizacji położenia odwiertów produkcyjnych.
Determining the optimal placement of production wells in a hydrocarbon reservoir is crucial for the effective exploitation. The problem formulated in this way is a complex optimization problem, the solution of which in the form of the location of the wells depends, inter alia, on the method of defining the objective function. Two forms of the objective function are most often found in the literature. These are the net pay value (NPV) and total oil production. The objective function based on the uniformity of the reservoir depletion is less common. The article is devoted to an attempt to apply the objective function based on the duration of oil production with a constant production rate (the so-called production plateau). The optimization was carried out for the total oil production and for the net pay value for the plateau period. The need to use a hybrid algorithm combining three mechanisms resulted, on the one hand, from the need to improve the effectiveness of the basic optimization method, and on the other hand, to reduce the so-called “premature convergence”. For this purpose, a hybrid optimization algorithm based on particle swarm optimization was built. These goals were achieved through the use of a productivity potential map and a mutation mechanism. Optimization was carried out for two different well control methods: group control with constant production rate and individual well control. The developed algorithm confirmed the effectiveness, obtaining an increase in the value of the objective function in relation to the original value from 40% to 300%. As a rule, the algorithm placed the production wells correctly in all analyzed cases. The well were located in the oil zone at a safe distance from both water-oil and oil-gas contacts, with some differences depending on the target function adopted. The simulations carried out confirmed the possibility of using the plateau duration as a function of the objective for optimizing the location of production wells.
Źródło:
Nafta-Gaz; 2022, 78, 8; 598-607
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja liczby i położenia odwiertów eksploatacyjnych z wykorzystaniem mapy potencjału produktywności
Optimization of the number and placement of exploitation wells using a productivity potential map
Autorzy:
Łętkowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/31344029.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
optymalizacja
symulacje złożowe
inteligencja roju
optymalizacja rojem cząstek
optymalna liczba odwiertów
optymalne położenie odwiertów
mapa potencjału produktywności
optimization
reservoir simulation
swarm intelligence
particle swarm optimization
optimal number of wells
optimal well placement
productivity potential map
Opis:
Jednym z podstawowych elementów planu zagospodarowania złoża węglowodorów jest określenie liczby i położenia odwiertów eksploatacyjnych (produkcyjnych i zatłaczających). Należy jednak zauważyć, że zdecydowana większość prac poświęcona temu zagadnieniu opisuje proces optymalizacji położenia, a nie liczby odwiertów, przyjmując, że jest ona zadana arbitralnie. Wynika to z faktu, że znane i stosowane metody optymalizacyjne operują na stałej liczbie parametrów optymalizacyjnych, w związku z czym liczba odwiertów wydobywczych nie może zmieniać się w trakcie procesu optymalizacji. W artykule przedstawiono modyfikację podstawowej metody optymalizacyjnej uwzględniającą zmianę liczby odwiertów w czasie optymalizacji, przy czym optymalizacja położenia i liczby odwiertów przebiega równocześnie. Podstawową metodą optymalizacyjną w skonstruowanym algorytmie jest optymalizacja rojem cząstek (ang. PSO) – jedna z najbardziej efektywnych metod optymalizacji bezgradientowej, należąca do grupy metod stochastycznych. Została ona zmodyfikowana dla potrzeb przyjętego problemu optymalizacyjnego poprzez zmianę postaci funkcji celu oraz wprowadzenie zmiennej progowej, co pozwoliło na operowanie zmienną liczbą odwiertów. W celu poprawienia zbieżności algorytm uzupełniono o mechanizm mutacji oparty na mapie potencjału produktywności. Testy zbieżności metody przeprowadzone na przykładzie złoża testowego PUNQ-S3 wskazały na zadowalającą efektywność zaproponowanego rozwiązania. Algorytm potrzebował 150 iteracji i 750 wywołań funkcji celu, aby 2,5-krotnie zwiększyć początkową wartość NPV przy równoczesnej 3,5-krotnej redukcji liczby odwiertów produkcyjnych. Z kolei zastosowanie algorytmu do optymalizacji liczby i rozmieszczenia odwiertów zatłaczających przy zadanej liczbie konfiguracji odwiertów wydobywczych pozwoliło na zwiększenie zysku netto o 1/3 przy ponad 2-krotnej redukcji liczby odwiertów
One of the basic elements of the hydrocarbon reservoir development plan is to determine the number and location of production and injection wells. However, it should be noted that most of the research works dedicated to this issue describe the process of placement optimization but not the number of exploitation wells assuming that it was an arbitrary set. This is partly due to the fact that known and used optimization methods operate on a fixed number of optimization parameters, therefore the number of production wells can not change during the optimization process. The paper presents modification of the basic optimization method taking into account the change in the number of wells during optimization. The optimization of the placement and number of wells run simultaneously. The basic optimization method in the constructed algorithm is particle swarm optimization (PSO) – one of the most effective methods of non-gradient optimization, belonging to the group of stochastic methods. It was modified for the needs of the adopted optimization problem by changing the form of the objective function and introducing the threshold variable which allowed to change the number of wells. In order to improve the convergence, the algorithm is supported by a mutation mechanism based on the productivity potential map. The convergence tests carried out based on the example of the PUNQ-S3 benchmark field showed the satisfactory effectiveness of the proposed solution. The algorithm took 150 iterations and 750 objective function calls to increase the starting NPV value by 2.5 times while reducing the number of production wells by 3.5 times. On the other hand, the use of the algorithm to optimize the number and placement of injection wells for a given number of production wells configuration allowed to increase the NPV value profit by 1/3 with a reduction of more than 2 times in the number of wells.
Źródło:
Nafta-Gaz; 2022, 78, 12; 861-871
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies