Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "opinion mining" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
A Comprehensive study: - Sarcasm detection in sentimental analysis
Autorzy:
Ratawal, Yamini
Tayal, Devendra
Powiązania:
https://bibliotekanauki.pl/articles/1159725.pdf
Data publikacji:
2018
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Sentimental analysis
Web mining
deep learning
machine learning
opinion mining
text mining
Opis:
Sarcasm detection is one of the active research area in sentimental analysis. However this paper talks about one of the recent issue in sentimental analysis that us sarcasm detection. In our work, we have described different techniques used in sarcasm detection that helps a novice researcher in efficient way. This paper represent different methodologies of carrying out research in this field.
Źródło:
World Scientific News; 2018, 113; 1-9
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel framework for aspect knowledge base generated automatically from social media using pattern rules
Autorzy:
Tran, Tuan Anh
Duangsuwan, Jarunee
Wettayaprasit, Wiphada
Powiązania:
https://bibliotekanauki.pl/articles/2097963.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
opinion mining
aspect knowledge base
aspect extraction
pattern rules
social media
Opis:
One of the factors that improve businesses in business intelligence is summarization systems that can generate summaries based on sentiment from social media. However, these systems cannot produce such summaries automatically; they use annotated datasets. To support these systems with annotated datasets, we propose a novel framework that uses pattern rules. The framework has two procedures: 1) pre-processing, and 2) aspect knowledge-base generation. The first procedure is to check and correct any misspelled words (bigram and unigram) by a proposed method and tag the parts-of-speech of all of the words. The second procedure is to automatically generate an aspect knowledge base that is to be used to produce sentiment summaries by sentiment-summarization systems. Pattern rules and semantic similarity-based pruning are used to automatically generate an aspect knowledge base from social media. In the experiments, eight domains from benchmark datasets of reviews are used. The performance evaluation of our proposed approach shows the highest performance when compared to other unsupervised approaches.
Źródło:
Computer Science; 2021, 22 (4); 489--516
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Information management tools for innovation analysts
Narzędzia zarządzania informacją dla analityków innowacji
Autorzy:
Eito-Brun, R.
Powiązania:
https://bibliotekanauki.pl/articles/256694.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
innovation
scientometrics
text mining
opinion mining
text visualization
innowacja
naukometria
eksploracja tekstu
badanie opinii
wizualizacja tekstu
Opis:
Innovation management is a knowledge-intensive process that requires dealing with different sources of data to identify relationships between the concepts, techniques, and tools that may led to innovations. Innovation analysts need to handle huge amounts of unstructured information: ideas gathered from internal staff and external partners, research papers and technical reports, patents and applications, etc. All these sources constitute valid inputs to assess the innovativeness of ideas, the feasibility of their implementation, and their potential value in the market. Innovation management discipline has widely used techniques and methods developed in the context of Information Science to support the identification of research trends, assess the outputs of innovation efforts and investments, and monitor the market and the activities made by competitors. The fruitful relationship between Information Science techniques and Innovation management needs to be regularly reviewed as new techniques and tools are designed and made available to the community. In the last years, significant progress has been achieved in areas like scientometrics, text visualization, and opinion mining. This paper provides an overview of these techniques and discusses how they can help professionals involved in innovation programs.
Zarządzanie innowacjami to oparty na wiedzy proces, w którym definiowany jest poziom zależności pomiędzy pomysłami, technikami i narzędziami mogącymi skutkować opracowaniem innowacji. Analityk innowacji musi zarządzać treściami niestrukturalnymi: pomysłami zgromadzonymi od pracowników jak i partnerów, wiedzą pochodzącą z publikacji naukowych i raportów technicznych, patentami i zgłoszeniami patentowymi itp. Wszystkie te źródła stanowią istotny wkład w proces oceny innowacyjności pomysłu, możliwości jego realizacji oraz konkurencyjności rynkowej. W zarządzaniu innowacjami powszechnie stosowane są techniki i metody informatyczne, które wspomagają proces identyfikacji trendów, oceny rezultatów, oszacowania niezbędnych nakładów finansowych czy monitorowania rynku. Oznacza to, że należy regularnie monitorować stan wiedzy i techniki w tym obszarze w celu zapewnienia jak najbardziej owocnej współpracy na styku nauk informatycznych i zarządzania innowacjami. W ostatnich latach znaczący postęp osiągnięto w takich dziedzinach jak naukometria, wizualizacja tekstu i badanie opinii. W artykule dokonano przeglądu tych technik i omówiono sposób, w jaki mogą one wspomóc specjalistów zaangażowanych w realizację innowacyjnych programów.
Źródło:
Problemy Eksploatacji; 2014, 4; 73-82
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sentiment Classification of Bank Clients’ Reviews Written in the Polish Language
Analiza sentymentu na podstawie polskojęzycznych recenzji klientów banku
Autorzy:
Idczak, Adam Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2033889.pdf
Data publikacji:
2021-06-30
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza sentymentu
klasyfikacja dokumentów
textmining
regresja logistyczna
naiwny klasyfikator Bayesa
sentiment analysis
opinion mining
text classification
text mining
logistic regression
naive Bayes classifier
Opis:
It is estimated that approximately 80% of all data gathered by companies are text documents. This article is devoted to one of the most common problems in text mining, i.e. text classification in sentiment analysis, which focuses on determining the sentiment of a document. A lack of defined structure of the text makes this problem more challenging. This has led to the development of various techniques used in determining the sentiment of a document. In this paper, a comparative analysis of two methods in sentiment classification, a naive Bayes classifier and logistic regression, was conducted. Analysed texts are written in the Polish language and come from banks. The classification was conducted by means of a bag‑of‑n‑grams approach, where a text document is presented as a set of terms and each term consists of n words. The results show that logistic regression performed better.
Szacuje się, że około 80% wszystkich danych gromadzonych i przechowywanych w systemach informacyjnych przedsiębiorstw ma postać dokumentów tekstowych. Artykuł jest poświęcony jednemu z podstawowych problemów textminingu, tj. klasyfikacji tekstów w analizie sentymentu, która rozumiana jest jako badanie wydźwięku tekstu. Brak określonej struktury dokumentów tekstowych jest przeszkodą w realizacji tego zadania. Taki stan rzeczy wymusił rozwój wielu różnorodnych technik ustalania sentymentu dokumentów. W artykule przeprowadzono analizę porównawczą dwóch metod badania sentymentu: naiwnego klasyfikatora Bayesa oraz regresji logistycznej. Badane teksty są napisane w języku polskim, pochodzą z banków i mają charakter marketingowy. Klasyfikację przeprowadzono, stosując podejście bag‑of‑n‑grams. W ramach tego podejścia dokument tekstowy wyrażony jest za pomocą podciągów składających się z określonej liczby n wyrazów. Uzyskane wyniki pokazały, że lepiej spisała się regresja logistyczna.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2021, 2, 353; 43-56
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
„Śmieci na wejściu, śmieci na wyjściu”. Wpływ jakości koderów na działanie sieci neuronowej klasyfikującej wypowiedzi w mediach społecznościowych
„Garbage in, Garbage out”. The Impact of Coders’ Quality on the Neural Network Classifying Text on Social Media
Autorzy:
Matuszewski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2131910.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sieci neuronowe
klasyfikacja danych tekstowych
modele nadzorowane
opinion mining
jakość koderów
text classification
neural networks
supervised models
quality of coders
Opis:
Jedna z głównych decyzji przy ręcznym kodowaniu danych tekstowych dotyczy tego, czy kodowanie ma być weryfikowane. W przypadku modeli nadzorowanych prowadzi to do istotnego dylematu: czy lepszym rozwiązaniem jest dostarczenie modelowi dużej liczby przypadków, na których będzie się uczyć kosztem weryfikacji poprawności danych, czy też zakodowanie każdego przypadku n-razy, co pozwoli porównać kody i sprawdzić ich poprawność, ale jednocześnie n-krotnie zmniejszy zbiór danych treningowych. Taka decyzja może zaważyć nie tylko na ostatecznych wynikach klasyfikatora. Z punktu widzenia badaczy jest istotna również dlatego, że – realistycznie zakładając, że badania mają ograniczone źródło finansowania – nie można jej cofnąć. Wykorzystując 100 tys. unikatowych i ręcznie zakodowanych tweetów przeprowadzono symulacje wyników klasyfikatora w zależności od kontrolowanego odsetka błędnie zakodowanych dokumentów. Na podstawie danych przedstawiono rekomendacje.
One of the critical decisions when manually coding text data is whether to verify the coders’ work. In the case of supervised models, this leads to a significant dilemma: is it better to provide the model with a large number of cases on which it will learn at the expense of verifying the correctness of the data, or whether it is better to code each case n-times, which will allow to compare the codes and check their correctness but at the same time will reduce the training dataset by n-fold. Such a decision not only affect the final results of the classifier. From the researchers’ point of view, it is also crucial because, realistically assuming that research has limited funding, it cannot be undone. The study uses a simulation approach and provides conclusions and recommendations based on 100,000 unique and hand-coded tweets.
Źródło:
Studia Socjologiczne; 2022, 2; 137-164
0039-3371
Pojawia się w:
Studia Socjologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Customer product review summarization over time for competitive intelligence
Autorzy:
Amarouche, Kamal
Benbrahim, Houda
Kassou, Ismail
Powiązania:
https://bibliotekanauki.pl/articles/950925.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
feature extraction
fuzzy logic
competitive intelligence
opinion mining
opinion summarization
sentiment analysis
SentiWordNet
ekstrakcja cech
logika rozmyta
wywiad konkurencyjny
eksploracja opinii
podsumowanie opinii
analiza nastrojów
Opis:
Nowadays, Customer’s product reviews can be widely found on the Web, be it in personal blogs, forums, or ecommerce websites. They contain important products’ information and therefore became a new data source for competitive intelligence. On that account, these reviews need to be analyzed and summarized in order to help the leader of an entity (company, brand, etc.) to make appropriate decisions in an efective way. However, most previous review summarization studies focus on summarizing sentiment distribution toward different product features without taking into account that the real advantages and disadvantages of a product clarify over time. For this reason, in this work we aim to propose a new system for product opinion summarization which depends on the time when reviews are expressed and that covers the sentiments change about product features. The proposed system firstly, generates a summary based on product features in order to give more accurate and efficient information about different features. secondly, classify the product based on its features in its appropriate class (good, medium or bad product) using a fuzzy logic system. The experimental results demonstrate the effectiveness of the proposed system to generate the real image of a product and its features in reviews.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 4; 70-82
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173622.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137271
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspect-based sentiment classification model employing whale-optimized adaptive neural network
Autorzy:
Balaganesh, Nallathambi
Muneeswaran, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128172.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii
Opis:
Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137271, 1--8
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies