Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kernel estimation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Estymacja nieparametryczna wybranych parametrów bloku gazowo-parowego
Nonparametric estimation of selected parameters of steam and gas power plant
Autorzy:
Gramacki, J.
Gramacki, A.
Powiązania:
https://bibliotekanauki.pl/articles/154300.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
estymacja nieparametryczna
estymacja jądrowa
Elektrociepłownia Zielona Góra
nonparametric estimation
kernel estimation
combined heat and power plant
CHP
Opis:
W pracy pokazano przykład użycia nieparametrycznej estymacji danych. Z pomocą tej techniki dokonano oszacowania emisji tlenków azotu (NOx) na podstawie danych eksploatacyjnych zbieranych podczas normalnej pracy Elektrociepłowni w Zielonej Górze. Na wstępnie dokonano krótkiego przeglądu najbardziej popularnych technik estymacji parametrycznej i porównano je z technikami nieparametrycznymi. Następnie na prostym przykładzie pokazano istotę działania estymacji nieparametrycznej. Pracę kończy rozdział, w którym krótko omówiono uzyskane wyniki symulacyjne.
In the paper there are shown some practical examples of using nonparametric estimation. Using this technique there were estimated the nitrogen oxides (NOx) emissions based on the data taken from a real industry plant (gas and steam combined heat and power (CHP) plant in Zielona Góra, Poland). This work can be treated as a continuation of the paper [2]. In the first section there is given a short overview of estimation methods, including the linear and nonlinear regression, and comparison of them with nonparametric ones. In the second section there is briefly presented the nonparametric estimation technique and there is given a simple illustrative example. The third paragraph is dedicated to presenting the experimental results. Basing on the data from the CHP plant, the NOx emission was estimated and the satisfactory results (in comparison, for example, with the results obtained from the linear regression estimator) were obtained. All calculations were carried out using np package for R-project environment which implements a variety of nonparametric (and also semiparametric) kernel-based estimators.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 7, 7; 454-456
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphics processing units in acceleration of bandwidth selection for kernel density estimation
Autorzy:
Andrzejewski, W.
Gramacki, A.
Gramacki, J.
Powiązania:
https://bibliotekanauki.pl/articles/330819.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
bandwidth selection
graphics processing unit
probability density function
nonparametric estimation
kernel estimation
szerokość pasmowa
programowalny procesor graficzny
funkcja gęstości prawdopodobieństwa
estymacja nieparametryczna
estymacja jądrowa
Opis:
The Probability Density Function (PDF) is a key concept in statistics. Constructing the most adequate PDF from the observed data is still an important and interesting scientific problem, especially for large datasets. PDFs are often estimated using nonparametric data-driven methods. One of the most popular nonparametric method is the Kernel Density Estimator (KDE). However, a very serious drawback of using KDEs is the large number of calculations required to compute them, especially to find the optimal bandwidth parameter. In this paper we investigate the possibility of utilizing Graphics Processing Units (GPUs) to accelerate the finding of the bandwidth. The contribution of this paper is threefold: (a) we propose algorithmic optimization to one of bandwidth finding algorithms, (b) we propose efficient GPU versions of three bandwidth finding algorithms and (c) we experimentally compare three of our GPU implementations with the ones which utilize only CPUs. Our experiments show orders of magnitude improvements over CPU implementations of classical algorithms.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 869-885
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Central Limit Theorem for Conditional Mode in the Single Functional Index Model with Data Missing at Random
Centralne twierdzenie graniczne dla trybu warunkowego w jednolitym funkcjonalnym modelu indeksowym z losowym brakiem danych
Autorzy:
Allal, Anis
Dib, Abdessamad
Rabhi, Abbes
Powiązania:
https://bibliotekanauki.pl/articles/31233548.pdf
Data publikacji:
2024
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
functional data analysis
functional single-index process
kernel estimator
missing at random
nonparametric estimation
small ball probability
funkcjonalna analiza danych
funkcjonalny proces pojedynczego indeksu
estymator jądra
losowe braki
estymacja nieparametryczna
prawdopodobieństwo małej kuli
Opis:
This paper concentrates on nonparametrically estimating the conditional density function and conditional mode within the single functional index model for independent data, particularly when the variable of interest is affected by randomly missing data. This involves a semi-parametric single model structure and a censoring process on the variables. The estimator's consistency (with rates) in a variety of situations, such as the framework of the single functional index model (SFIM) under the assumption of independent and identically distributed (i.i.d) data with randomly missing entries, as well as its performance under the assumption that the covariate is functional, are the main areas of focus. For this model, the nearly almost complete uniform convergence and rate of convergence established. The rates of convergence highlight the critical part that the probability of concentration play in the law of the explanatory functional variable. Additionally, we establish the asymptotic normality of the derived estimators proposed under specific mild conditions, relying on standard assumptions in Functional Data Analysis (FDA) for the proofs. Finally, we explore the practical application of our findings in constructing confidence intervals for our estimators. The rates of convergence highlight the critical part that the probability of concentration play in the law of the explanatory functional variable.
W artykule skoncentrowano się na nieparametrycznym estymowaniu warunkowej funkcji gęstości i warunkowej dominanty w modelu pojedynczego wskaźnika funkcjonalnego dla niezależnych danych, szczególnie gdy na interesującą zmienną wpływają losowo brakujące dane. Obejmuje to strukturę półparametrycznego pojedynczego modelu i proces cenzurowania zmiennych. Zgodność estymatora (ze współczynnikami) w różnych sytuacjach, np. w ramach modelu pojedynczego wskaźnika funkcjonalnego przy założeniu niezależnych i z identycznym rozkładem danych z losowymi brakami, a także jego działanie w warunkach, gdy zmienna towarzysząca jest funkcjonałem, to główne obszary zainteresowania. Dla tego modelu wyznacza się prawie całkowicie jednolitą zbieżność i wskaźnik zbieżności. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdopodobieństwo koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej. Dodatkowo ustala się asymptotyczną normalność wyprowadzonych estymatorów zaproponowanych w określonych łagodnych warunkach, opierając się na standardowych założeniach z analizy danych funkcjonalnych dla dowodów. Na koniec zbadano praktyczne zastosowanie ustaleń w konstruowaniu przedziałów ufności dla naszych estymatorów. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdopodobieństwo koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2024, 28, 1; 39-60
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single Functional Index Quantile Regression for Functional Data with Missing Data at Random
Właściwości asymptotyczne estymatorów półparametrycznych dla kwantyla warunkowego pojedynczego wskaźnika funkcjonalnego z losowymi brakami danych
Autorzy:
Kadiri, Nadia
Mekki, Sanaà Dounya
Rabhi, Abbes
Powiązania:
https://bibliotekanauki.pl/articles/21375671.pdf
Data publikacji:
2023
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
functional data analysis
functional single index process
kernel estimator
missing at random
nonparametric estimation
small ball probability
funkcjonalna analiza danych
funkcjonalny proces pojedynczego indeksu
estymator jądra
losowe braki
estymacja nieparametryczna
prawdopodobieństwo małej kuli
Opis:
The primary goal of this research was to estimate the quantile of a conditional distribution using a semi-parametric approach in the presence of randomly missing data, where the predictor variable belongs to a semi-metric space. The authors assumed a single index structure to link the explanatory and response variable. First, a kernel estimator was proposed for the conditional distribution function, assuming that the data were selected from a stationary process with missing data at random (MAR). By imposing certain general conditions, the study established the model’s uniform almost complete consistencies with convergence rates.
Głównym celem przedstawionych w artykule badań jest oszacowanie kwantyla rozkładu warunkowego przy użyciu podejścia półparametrycznego w obecności losowo brakujących danych, gdzie zmienna predykcyjna należy do przestrzeni semimetrycznej. Założono strukturę pojedynczego indeksu, aby połączyć zmienną objaśniającą i zmienną odpowiedzi. Wstępnie zaproponowano estymator jądra dla funkcji rozkładu warunkowego, zakładając, że dane są losowo wybierane z procesu stacjonarnego z brakującymi danymi (MAR). Nakładając pewne ogólne warunki, ustalono jednolitą, prawie całkowitą zgodność modelu ze współczynnikami konwergencji.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2023, 27, 3; 1-19
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies