Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "analiza neuronowa obrazu" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Konwersja obrazów cyfrowych do postaci zbiorów uczących dla potrzeb modelowania neuronowego
Conversion of digital images into the form of teaching sets for the purposes of neural modeling
Autorzy:
Przybylak, A.
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/287969.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
przetwarzanie obrazu
analiza obrazu
piksel
zbiór uczący
sieć neuronowa
image processing
image analysis
pixel
teaching set
neural network
Opis:
Wykorzystanie sztucznych sieci neuronowych na potrzeby analizy obrazu wymaga prawidłowego przygotowania zbiorów uczących. W przypadku pozyskiwania informacji z obrazów cyfrowych konieczna jest ich konwersja do postaci akceptowanej przez sztuczną sieć neuronową. Niezwykle istotne jest, aby do struktury zbioru uczącego trafiły cechy reprezentatywne, pozwalające na poprawne działanie modelu neuronowego. W przedstawionym w pracy systemie użytkownik ma możliwość wyboru danych, które umieści w zbiorze uczącym. W aktualnej wersji systemu mogą to być informacje o barwie, na które składają się: histogram, tekstura oraz składowe modelu RGB.
Using artificial neural networks for image analysis purposes requires proper preparation of teaching sets. In case of information acquisition from digital images it is necessary to convert them into the form accepted by an artificial neural network. It is extremely important to incorporate representative features allowing correct operation of neural model into the teaching set structure. In the system presented in this work user is able to select data, which will be included in the teaching set. In current system version this may be information on colour, which includes: histogram, texture and the RGB model components.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 9, 9; 201-206
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka badawcza oraz przygotowanie zbiorów uczących dla sieci neuronowych identyfikujących jakość kompostu
Research methodology and preparation of learning datasets for neural networks identifying compost quality
Autorzy:
Jakubek, A.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/286658.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kompost
analiza obrazu
sieć neuronowa
sztuczna inteligencja
compost
image analysis
neural network
artificial intelligence
Opis:
Nie istnieje tania i szybka metoda określania stopnia dojrzałości kompostu, która mogłaby zostać przeprowadzona przez osobę nie posiadającą doświadczenia w tej dziedzinie. Podjęto zatem próbę jej estymacji wykorzystując jako narzędzie sztuczne sieci neuronowe. Opisana metodyka przestawia kolejne etapy prac badawczych przeprowadzonych w celu pozyskania reprezentatywnych danych do trenowania inteligentnych systemów klasyfikujących.
There is no cheap and quick method for determining the degree of compost maturity, which could be carried out by a person having no experience in this field. Therefore, there has been an attempt made to estimate it using artificial neural networks as a tool. Described methodology presents subsequent stages of research works carried out in order to acquire representative data for training intelligent classifying systems.
Źródło:
Inżynieria Rolnicza; 2011, R. 15, nr 1, 1; 85-90
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa analiza zdjęć ultrasonograficznych w procesie identyfikacji poziomu zawartości tłuszczu - badania wstępne
Neural analysis of the ultrasonographic images in the intramuscular fat level content identification process - preliminary research
Autorzy:
Przybylak, A.
Boniecki, P.
Kozłowski, R. J.
Ślósarz, P.
Powiązania:
https://bibliotekanauki.pl/articles/290911.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
zawartość tłuszczu
ultrasonografia
analiza obrazu
sieć neuronowa
fat content
ultrasonographic
image analysis
neural network
Opis:
Rozwiązanie problemu identyfikacji ilości tłuszczu w mięsie, na podstawie informacji zawartej w obrazie ultrasonograficznym wykonanym na żywym zwierzęciu, ma istotne znaczenie utylitarne. W pracy zaproponowano wykorzystanie nowoczesnych metod sztucznej inteligencji, a w szczególności aproksymacyjnych technik sztucznych sieci neuronowych.
The solution of the problem in the identification process of the quantity of the intramuscular fat, on the basis of contained information in the ultrasonographic photo from living animal, has the essential utilitarian meaning. This paper investigates the utilization of methods of artificial intelligence, in particularly approximation algorithms of artificial neural network models.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 6(104), 6(104); 159-165
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sieci neuronowe typu MLP oraz RBF jako narzędzia klasyfikacyjne w analizie obrazu
The neural network type the MLP and RBF as classifying tools in picture analysis
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337163.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
sieć neuronowa MLP
sieć neuronowa RBF
analiza obrazu
identyfikacja neuronowa
model neuronowy
neural network
MLP neural network
RBF neural network
picture analysis
neuronal identification
neuronal model
Opis:
Neuronowa identyfikacja danych obrazowych, ze szczególnym naciskiem na analizę ilościową oraz jakościową, coraz częściej wykorzystywana jest do pozyskiwania oraz zgłębiania wiedzy zawartej w danych empirycznych. Ekstrakcja, a następnie klasyfikacja wybranych cech obrazu, pozawala na wytworzenie informatycznych narzędzi do identyfikacji wybranych obiektów, prezentowanych np. w postaci obrazu cyfrowego. W związku z tym, celowym wydaje się być poszukiwanie nowoczesnych metod wspomagających proces edukacyjny w zakresie konstrukcji oraz eksploatacji modeli neuronowych w kontekście ich wykorzystania w procesie analizy obrazu. Dodatkowym celem pracy było porównanie jakości sieci MLP oraz RBF mające na względzie wskazanie optymalnego instrumentu klasyfikacyjnego.
The neuronal identification of pictorial data, with special emphasis on both quantitative & qualitative analysis, is more frequently utilized to gain & deepen the empirical data knowledge. Extraction & then classification of selected picture features, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. In relationship from this, it seems to be purposeful the search of the modern methods helping educational process in the range of construction as well as exploitation of neuronal models in context of their utilization in picture analysis process. The additional aim of the work was the comparison of neural network of the type MLP and RBF for indication of the optimum classification tool.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 4; 34-39
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sieci neuronowych do zliczania owadobójczych nicieni
Using neural networks to count insecticidal nematoda
Autorzy:
Chojnacki, J.
Tomkiewicz, D.
Powiązania:
https://bibliotekanauki.pl/articles/289950.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
biologiczny środek ochrony roślin
nicienie
komputerowa analiza obrazu
sieć neuronowa
biological plant pesticide
Nematoda
computer image analysis
neural network
Opis:
Przeprowadzono badania nad wykorzystaniem sieci neuronowych w komputerowej analizie obrazu do zliczania owadobójczych nicieni. Został opracowany klasyfikator składający się z sieci neuronowej, który na podstawie wektora cech otrzymanych z obrazu klasyfikował obiekty na zdjęciu określając z czy obiekty są nicieniami i z jakiej ilości nicieni się składają. W celu optymalnego wyboru wektora cech zastosowano metodę Optimal Brain Surgeon.
The scope of the research involved studies on applying neural networks in computer image analysis for the purposes of counting insecticidal nematoda. The researchers developed a classifier consisting of a neural network, and classifying objects shown on a photo according to the vector of characteristics obtained from the image. Thus, the classifier was determining whether the objects were nematoda and how many nematoda they contained. The Optimal Brain Surgeon method was employed in order to ensure optimal selection of characteristics vector.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 11(109), 11(109); 39-45
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybór reprezentatywnej struktury zbiorów uczących dla potrzeb neuronowych modeli identyfikacyjnych wykorzystywanych w inżynierii rolniczej
Selection of representative structure of learning sets for purpose of neuron identification models used in agricultural engineering
Autorzy:
Nowakowski, K.
Boniecki, P.
Weres, J.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/287545.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
reprezentatywne dane uczące
sieć neuronowa
analiza obrazu
inżynieria rolnicza
agricultural engineering
representative learning data
neural network
image analysis
Opis:
Wykorzystanie sztucznych sieci neuronowych do identyfikacji mechanicznych uszkodzeń ziarniaków na podstawie ich fotografii wymaga doboru odpowiednich cech charakterystycznych na podstawie, których zostanie przeprowadzony proces rozpoznawania. Ponieważ stosowanie sieci neuronowych do bezpośredniego mapowania zbiorów graficznych jest nieefektywne, wskazane jest użycie bloku przetwarzania wstępnego, tzw. preprocesora. Zaprojektowanie i wytworzenie właściwego systemu informatycznego dla tak sformułowanego celu pozwoliło na dokonanie transformacji danych pierwotnych (zdjęcia fotograficzne) do reprezentacji danych, która będzie odpowiednia dla wykorzystania w procesie uczenia sieci neuronowej.
Use of artificial neural networks for identification of the mechanical damages to grains based on photographs requires a selection of appropriate characteristic features in order to conduct a recognition process. Since the application of neural networks for direct mapping of graphic sets is not really effective, it is recommended to use the initial processing block, so called preprocessor. Design and creation of a proper information system for this particular purpose allowed to transform raw data (photographic images) for data representation, appropriate to be used in the learning process of neural network.
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 6 (94), 6 (94); 183-188
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ liczby zmiennych na jakość działania neuronowego modelu do identyfikacji mechanicznych uszkodzeń ziarniaków kukurydzy
The impact of the number of variables on the operation quality of neuron model for identifying mechanical damage of corn seeds
Autorzy:
Nowakowski, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/290908.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kukurydza
uszkodzenie mechaniczne
identyfikacja
reprezentatywne dane uczące
sieć neuronowa
analiza obrazu
maize
mechanical damage
identifying
representative teaching data
neural network
image analysis
Opis:
Wykorzystanie sztucznych sieci neuronowych do identyfikacji mechanicznych uszkodzeń ziarniaków, prezentowanych w postaci fotografii, wymaga doboru odpowiednich cech charakterystycznych, na podstawie których zostanie przeprowadzony proces rozpoznawania. Wybór danych można zweryfikować wykorzystując narzędzie analizy wrażliwości sieci. Dzięki jego zastosowaniu można ocenić poziom istotności poszczególnych cech charakterystycznych i sprawdzić czy wszystkie wcześniej wybrane zmienne są niezbędne w procesie uczenia.
Using of artificial neuron networks for identifying mechanical damage of seeds presented on photographs requires selection of proper characteristics, which can be the basis for identification process. Data choice can be verified by using the instrument of network sensitivity analysis. Thanks to its use the significance level of particular characteristics can be evaluated, and it may be verified if all selected variables are essential in the learning process.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 6(104), 6(104); 151-157
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczny klasyfikator rodzaju uszkodzenia amortyzatora samochodowego
Automatic classifier of the kind of car shock absorber damage
Autorzy:
Cempiel, D.
Powiązania:
https://bibliotekanauki.pl/articles/133451.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
diagnozowanie amortyzatorów
metoda EUSAMA
sieć neuronowa
analiza obrazu
automatyczny diagnosta
klasyfikator
shock absorber diagnosis
EUSAMA method
neural network
image analysis
automatic classifier
Opis:
W artykule przedstawiono analizę wpływu czynników zewnętrznych (dodatkowe obciążenie, zmiany ciśnienia w oponach) na wartość wskaźnika EUSAMA. Jednocześnie zaproponowano automatyczną metodę diagnozowania stanu amortyzatorów przy pomocy analizy obrazów z wykorzystaniem sieci neuronowej oceniającej przebieg wartości wskaźnika EUSAMA w czasie. Na potrzeby pracy przygotowano model matematyczny części zawieszenia wraz ze stanowiskiem badawczym opartym o metodę EUSAMA plus. Zamodelowano układ odzwierciedlający dynamikę jednej czwartej zawieszenia pojazdu. Metoda automatycznego diagnozowania stanu amortyzatorów zakłada poprawność przeprowadzonego badania metodą EUSAMA. Uzyskane wyniki spełniły oczekiwania.
The article presents an analysis of the impact of external factors (extra load, tire pressure changes) on the value of the EUSAMA ratio. A method of automatic diagnosis of shock absorbers is proposed. This method is based on image analysis using a neural network appraising the “EUSAMA plus” ratio in the time domain. For the purpose of this paper a mathematical model of quarter of the car suspension with the test stand based on the method EUSAMA was prepared. The method of automatic diagnosis of shock absorbers assumes the correctness of the EUSAMA test. The results met expectations.
Źródło:
Combustion Engines; 2013, 52, 3; 1069-1075
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies