Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algorytmy sztucznej inteligencji" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wspomaganie sterowania statkiem za pomocą ewolucyjnych sieci neuronowych
Ship steering support with the use of evolutionary neural networks
Autorzy:
Łącki, M.
Powiązania:
https://bibliotekanauki.pl/articles/360275.pdf
Data publikacji:
2008
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
uczenie maszynowe
algorytmy sztucznej inteligencji
ewolucyjne sieci neuronowe
sterowanie statkiem
machine learning
artificial intelligence algorithms
evolutionary neural networks
ship steering
Opis:
W artykule przedstawiono koncepcję zastosowania ewolucyjnych sieci neuronowych we wspomaganiu procesów podejmowania decyzji podczas manewrowania statkiem na ograniczonym obszarze. Rozważane są wybrane algorytmy, operacje genetyczne, metody kodowania i selekcji oraz struktury ewolucyjnych sieci neuronowych.
This paper describes a concept of evolutionary neural networks application in decision process support during vessel manoeuvring in a restricted area. Selected algorithms, genetic operations, methods of coding and selection, and structures of evolutionary neural networks are considered in the paper.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2008, 14 (86); 34-37
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning-based business rule engine data transformation over high-speed networks
Autorzy:
Neelima, Kenpi
Vasundra, S.
Powiązania:
https://bibliotekanauki.pl/articles/38700094.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
CRISP-DM
data mining algorithms
business rule
prediction
classification
machine learning
deep learning
AI design
algorytmy eksploracji danych
reguła biznesowa
prognoza
klasyfikacja
nauczanie maszynowe
uczenie głębokie
projekt Sztucznej Inteligencji
Opis:
Raw data processing is a key business operation. Business-specific rules determine howthe raw data should be transformed into business-required formats. When source datacontinuously changes its formats and has keying errors and invalid data, then the effectiveness of the data transformation is a big challenge. The conventional data extraction andtransformation technique produces a delay in handling such data because of continuousfluctuations in data formats and requires continuous development of a business rule engine.The best business rule engines require near real-time detection of business rule and datatransformation mechanisms utilizing machine learning classification models. Since data iscombined from numerous sources and older systems, it is challenging to categorize andcluster the data and apply suitable business rules to turn raw data into the business-required format. This paper proposes a methodology for designing ensemble machine learning techniques and approaches for classifying and segmenting registered numbersof registered title records to choose the most suitable business rule that can convert theregistered number into the format the business expects, allowing businesses to provide customers with the most recent data in less time. This study evaluates the suggested modelby gathering sample data and analyzing classification machine learning (ML) models todetermine the relevant business rule. Experimentation employed Python, R, SQL storedprocedures, Impala scripts, and Datameer tools.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 1; 55-71
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies