Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear parameter" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Robust fuzzy model predictive control of an overhead crane
Autorzy:
Smoczek, J.
Szpytko, J.
Powiązania:
https://bibliotekanauki.pl/articles/242944.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
overhead crane
model predictive control
linear parameter varying model
fuzzy interpolation
Opis:
The method of controlling an overhead crane with respect to the variation of operating conditions and control constraints is developed using a model predictive control (MPC) and fuzzy interpolation applied in linear parameter varying (LPV) approach to crane dynamic modelling. The proposed control approach is based on the assumption that operating conditions vary within the known range of scheduling variables, and the parameters of a crane dynamic model can be interpolated by a quasi-linear fuzzy model designed through utilizing the P1-TS fuzzy theory. Hence, a crane dynamic is approximated through interpolation between a set of local linear models determined through identification experiments at the local operating points selected within the bounded intervals of scheduling variables. For the modelling assumptions, the control algorithm is developed based on a generalized predictive control (GPC) procedure taking into consideration the constraints on sway angle of a payload and control signal. Feasibility and applicability of the proposed control technique were confirmed during experiments carried out on a laboratory-scaled overhead crane. The results of experiments are presented and compared with performances of a fuzzy logic-based scheduling control scheme.
Źródło:
Journal of KONES; 2015, 22, 2; 205-212
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust predictive control of an overhead crane
Autorzy:
Smoczek, J.
Szpytko, J.
Powiązania:
https://bibliotekanauki.pl/articles/243833.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
overhead crane
predictive control
linear parameter varying model
recursive estimation
fuzzy interpolation
Opis:
The predictive control scheme is developed for an overhead crane using the generalized predictive procedure applied for the discrete time linear parameter-varying model of a crane dynamic. The robust control technique is developed with respect to the constraints of sway angle of a payload and control input signal. The two predictive strategies are presented and compared experimentally. In the first predictive control scheme, the online estimation of the parameters of a crane dynamic model is performed using the recursive least square algorithm. The second approach is a sensorless anti-sway control strategy. The sway angle feedback signal is estimated by a linear parameter-varying model of an unactuated pendulum system with the parameters interpolated using a quasi-linear fuzzy model designed through utilizing the P1-TS fuzzy theory. The fuzzy interpolator is applied to approximate the parameters of a crane discrete-time dynamic model within the range of scheduling variables changes: the rope length and mass of a payload. The experiments carried out on a laboratory scaled overhead crane confirmed effectiveness and feasibility of the proposed solutions. The implementation of control systems was performed using the PAC system with RX3i controller. The series of experiments carried out for different operating points proved robustness of the control approaches presented in the article.
Źródło:
Journal of KONES; 2017, 24, 2; 231-238
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parameter identifiability for nonlinear LPV models
Autorzy:
Srinivasarengan, Krishnan
Ragot, José
Aubrun, Christophe
Maquin, Didier
Powiązania:
https://bibliotekanauki.pl/articles/2134053.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
parameter identifiability
parameter estimation
linear parameter varying model
parity space approach
null space
identyfikacja parametrów
szacowanie parametrów
spacja zerowa
Opis:
Linear parameter varying (LPV) models are being increasingly used as a bridge between linear and nonlinear models. From a mathematical point of view, a large class of nonlinear models can be rewritten in LPV or quasi-LPV forms easing their analysis. From a practical point of view, that kind of model can be used for introducing varying model parameters representing, for example, nonconstant characteristics of a component or an equipment degradation. This approach is frequently employed in several model-based system maintenance methods. The identifiability of these parameters is then a key issue for estimating their values based on which a decision can be made. However, the problem of identifiability of these models is still at a nascent stage. In this paper, we propose an approach to verify the identifiability of unknown parameters for LPV or quasi-LPV state-space models. It makes use of a parity-space like formulation to eliminate the states of the model. The resulting input-output-parameter equation is analyzed to verify the identifiability of the original model or a subset of unknown parameters. This approach provides a framework for both continuous-time and discrete-time models and is illustrated through various examples.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 2; 255--269
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies