Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kernel method" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Some Nonparametric Estimators of Regression Function
Wybrane nieparametryczne estymatory funkcji regresji
Autorzy:
Baszczyńska, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/906895.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
regression function
kernel function
smoothing parameter
k-nearest neighbour method
kernel method
Opis:
In the paper some nonparametric estimators of regression function are studied: Nadaraya-Watson estimator and k-nearest neighbour one. Properties of these estimators and possibilities of using them in practice are taken into consideration. A comparative study of the two estimators is presented. Different techniques of choosing method’s parameters (kernel function, smoothing parameter h and parameter k) are used in this study to choose the optimal ones. Some practical rules are proposed and they are used in this study.
W pracy przedstawiono wybrane dwa nieparametryczne estymatory funkcji regresji: estymator jądrowy Nadaraya-Watsona oraz estymator k-najbliższego sąsiada. Podano ich własności, możliwości wykorzystania oraz dokonano porównania tych estymatorów. Przedstawiono również przykład zastosowania estymatora jądrowego regresji z uwzględnieniem właściwego doboru parametrów metody (funkcji jądra i parametru wygładzania h) oraz estymatora k-najbliższego sąsiada z uwzględnieniem właściwego doboru parametru k. Zaproponowano również praktyczne zasady wyboru parametrów estymacji funkcji regresji i wykorzystano je w przykładzie.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2007, 206
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance Evaluation of MC-CDMA Systems with Single User Detection Technique using Kernel and Linear Adaptive Method
Autorzy:
Fateh, Rachid
Darif, Anouar
Safi, Said
Powiązania:
https://bibliotekanauki.pl/articles/2058482.pdf
Data publikacji:
2021
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
BRAN channels
equalization
kernel method
MC-CDMA
reproducing kernel Hilbert space
Opis:
Among all the techniques combining multi-carrier modulation and spread spectrum, the multi-carrier code division multiple access (MC-CDMA) system is by far the most widely studied. In this paper, we present the performance of the MC-CDMA system associated with key single-user detection techniques. We are interested in problems related to identification and equalization of mobile radio channels, using the kernel method in Hilbert space with a reproducing kernel, and a linear adaptive algorithm, for MC-CDMA systems. In this context, we tested the efficiency of these algorithms, considering practical frequency selective fading channels, called broadband radio access network (BRAN), standardized for MC-CDMA systems. As far as the equalization problem encountered after channel identification is concerned, we use the orthogonality restoration combination (ORC) and the minimum mean square error (MMSE) equalizer techniques to correct the distortion of the channel. Simulation results demonstrate that the kernel algorithm is efficient for practical channel.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 4; 1--11
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kernel Estimation of Cumulative Distribution Function of a Random Variable with Bounded Support
Autorzy:
Baszczyńska, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/465685.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
boundary effects
cumulative distribution function
kernel method
bounded support
Opis:
In the paper methods of reducing the so-called boundary effects, which appear in the estimation of certain functional characteristics of a random variable with bounded support, are discussed. The methods of the cumulative distribution function estimation, in particular the kernel method, as well as the phenomenon of increased bias estimation in boundary region are presented. Using simulation methods, the properties of the modified kernel estimator of the distribution function are investigated and an attempt to compare the classical and the modified estimators is made.
Źródło:
Statistics in Transition new series; 2016, 17, 3; 541-556
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
COMPUTER-ASSISTED CHOICE OF SMOOTHING PARAMETER IN KERNEL METHODS APPLIED IN ECONOMIC ANALYSES
Autorzy:
Baszczyńska, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/453961.pdf
Data publikacji:
2014
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
kernel method
smoothing parameter
Silverman’s practical rule
SiZer map
Opis:
In the kernel method, it is necessary to determine the value of the smoothing parameter. Not without significance is the fact of using the objectivity in the selection of this parameter and a certain automation of the selection procedure, which is important especially for novice users of kernel methods in the process of statistical inference. In the paper some methods of choice of the smoothing parameter are presented with the results of the simulation study that indicate these methods of selecting the smoothing parameter as handy tool when kernel methods are used in economic analyses.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2014, 15, 2; 37-46
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some Remarks on the Symmetry Kernel Test
Uwagi o jądrowym teście symetryczności
Autorzy:
Baszczyńska, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/905773.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
kernel method
symmetry
Li symmetry test
triple test
Gupta symmetry test
Opis:
The paper presents chosen statistical tests used to verify the hypothesis of the symmetry of random variable’s distribution. Detailed analysis of the symmetry kernel test is made. The properties of the regarded symmetry kernel test are compared with the other symmetry tests using Monte Carlo methods. The symmetry tests are used, as an example, in analysis of the distribution of the Human Development Index (HDI).
W pracy przedstawiono wybrane statystyczne testy wykorzystywane w weryfikacji hipotezy o symetryczności rozkładu zmiennej losowej. Szczegółowej analizie poddano test symetryczności oparty o metodę jądrową. Porównano własności zaprezentowanych testów symetryczności oraz zastosowano je go analizy rozkładu wskaźnika rozwoju społecznego (HDI).
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A feasible k-means kernel trick under non-Euclidean feature space
Autorzy:
Kłopotek, Robert
Kłopotek, Mieczysław
Wierzchoń, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/1838163.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
kernel method
k-means
non-Euclidean feature space
Gower and Legendre theorem
Opis:
This paper poses the question of whether or not the usage of the kernel trick is justified. We investigate it for the special case of its usage in the kernel k-means algorithm. Kernel-k-means is a clustering algorithm, allowing clustering data in a similar way to k-means when an embedding of data points into Euclidean space is not provided and instead a matrix of “distances” (dissimilarities) or similarities is available. The kernel trick allows us to by-pass the need of finding an embedding into Euclidean space. We show that the algorithm returns wrong results if the embedding actually does not exist. This means that the embedding must be found prior to the usage of the algorithm. If it is found, then the kernel trick is pointless. If it is not found, the distance matrix needs to be repaired. But the reparation methods require the construction of an embedding, which first makes the kernel trick pointless, because it is not needed, and second, the kernel-k-means may return different clusterings prior to repairing and after repairing so that the value of the clustering is questioned. In the paper, we identify a distance repairing method that produces the same clustering prior to its application and afterwards and does not need to be performed explicitly, so that the embedding does not need to be constructed explicitly. This renders the kernel trick applicable for kernel-k-means.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 4; 703-715
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Empirical and Kernel Estimation of the ROC Curve
EMPIRYCZNY I JĄDROWY ESTYMATOR KRZYWEJ ROC
Autorzy:
Baszczyńska, Aleksandra Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/654315.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
krzywa ROC curve
empiryczny estymator
metoda jądrowa
parametr wygładzania
funkcja jądra
ROC curve
empirical estimator
kernel method
smoothing parameter
kernel function
Opis:
W pracy rozważane są wybrane metody estymacji krzywej ROC (Receiver Operating Characteristic), w tym metody parametryczne i nieparametryczne. Podejście nieparametryczne może oznaczać zastosowanie empirycznego estymatora krzywej ROC lub  estymatora jądrowego. Podjęta jest próba porównania estymacji empirycznej oraz jądrowej ze szczególnym uwzględnieniem wpływu liczebności próby, jak również metody wyboru parametru wygładzania i funkcji jądra na rezultat procedury estymacyjnej. W oparciu o wyniki badania symulacyjnego określone są wskazówki użyteczne w procedurach estymacji krzywej ROC.
The paper presents chosen methods for estimating the ROC (Receiver Operating Characteristic) curve, including parametric and nonparametric procedures. Nonparametric  approach may involve the use of empirical method or kernel method of the ROC curve estimation. In the analysis, an attempt of comparison of empirical and kernel ROC estimators is done, considering the impact of sample size, choice of smoothing parameter and kernel function in kernel estimation on the results of the estimation. Based on the results of simulation studies, some suggestions, useful in the procedures of nonparametric ROC curve are determined.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2015, 1, 311
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of prototype selection algorithms used in construction of neural networks learned by SVD
Autorzy:
Jankowski, N.
Powiązania:
https://bibliotekanauki.pl/articles/330020.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
radial basis function network
extreme learning machine
kernel method
prototype selection
machine learning
k nearest neighbours
radialna funkcja bazowa
metoda jądrowa
uczenie maszynowe
metoda k najbliższych sąsiadów
Opis:
Radial basis function networks (RBFNs) or extreme learning machines (ELMs) can be seen as linear combinations of kernel functions (hidden neurons). Kernels can be constructed in random processes like in ELMs, or the positions of kernels can be initialized by a random subset of training vectors, or kernels can be constructed in a (sub-)learning process (sometimes by k-means, for example). We found that kernels constructed using prototype selection algorithms provide very accurate and stable solutions. What is more, prototype selection algorithms automatically choose not only the placement of prototypes, but also their number. Thanks to this advantage, it is no longer necessary to estimate the number of kernels with time-consuming multiple train-test procedures. The best results of learning can be obtained by pseudo-inverse learning with a singular value decomposition (SVD) algorithm. The article presents a comparison of several prototype selection algorithms co-working with singular value decomposition-based learning. The presented comparison clearly shows that the combination of prototype selection and SVD learning of a neural network is significantly better than a random selection of kernels for the RBFN or the ELM, the support vector machine or the kNN. Moreover, the presented learning scheme requires no parameters except for the width of the Gaussian kernel.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 719-733
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fast neural network learning algorithm with approximate singular value decomposition
Autorzy:
Jankowski, Norbert
Linowiecki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/330870.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Moore–Penrose pseudoinverse
radial basis function network
extreme learning machine
kernel method
machine learning
singular value decomposition
deep extreme learning
principal component analysis
pseudoodwrotność Moore–Penrose
radialna funkcja bazowa
maszyna uczenia ekstremalnego
uczenie maszynowe
analiza składników głównych
Opis:
The learning of neural networks is becoming more and more important. Researchers have constructed dozens of learning algorithms, but it is still necessary to develop faster, more flexible, or more accurate learning algorithms. With fast learning we can examine more learning scenarios for a given problem, especially in the case of meta-learning. In this article we focus on the construction of a much faster learning algorithm and its modifications, especially for nonlinear versions of neural networks. The main idea of this algorithm lies in the usage of fast approximation of the Moore–Penrose pseudo-inverse matrix. The complexity of the original singular value decomposition algorithm is O(mn2). We consider algorithms with a complexity of O(mnl), where l < n and l is often significantly smaller than n. Such learning algorithms can be applied to the learning of radial basis function networks, extreme learning machines or deep ELMs, principal component analysis or even missing data imputation.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 581-594
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies