Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "estymator" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Dylematy związane z estymacją dominanty wynagrodzeń
Dilemmas relating to mode estimation of wages and salaries
Autorzy:
Błażej, Mirosław
Gosińska, Emilia
Powiązania:
https://bibliotekanauki.pl/articles/2156752.pdf
Data publikacji:
2022-12-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
dominanta
estymator jądrowy
estymacja dominanty
histogram
mode
kernel estimator
mode estimation
Opis:
Dominanta wynagrodzeń to ważny wskaźnik opisujący rozkład wynagrodzeń, ale ze względu na silną asymetrię rozkładu tej cechy w Polsce jej wyznaczenie nie należy do standardowych działań w analizie struktury wynagrodzeń. Celem artykułu jest omówienie wybranych metod szacowania dominanty oraz porównanie wyników jej estymacji otrzymanych za pomocą różnych metod. Wykorzystano dane o wynagrodzeniach indywidualnych brutto w październiku 2018 r. pochodzące z badania struktury wynagrodzeń przeprowadzonego przez Główny Urząd Statystyczny. W przypadku metody standardowej, wykorzystującej wzór interpolacyjny i histogram, wartość oszacowanej dominanty jest wrażliwa na założoną rozpiętość przedziałów w szeregu rozdzielczym i początek pierwszego przedziału. Zmniejszanie rozpiętości przedziałów powoduje dążenie dominanty do wartości równej płacy minimalnej. Zastosowanie zaawansowanych metod statystycznych, m.in. wykorzystujących estymator jądrowy, prowadzi do otrzymania znacząco różnych oszacowań dominanty w zależności od metody (rozrzut wyników wynosi ok. 800 zł). Analiza otrzymanych wyników daje ponadto podstawy do rozważenia tezy, że rozkład wynagrodzeń jest mieszany: ma cechy rozkładu dyskretnego dla wynagrodzeń w wysokości płacy minimalnej i ciągłego – dla wynagrodzeń powyżej płacy minimalnej oraz odznacza się cyklicznością (w Polsce zawiera się więcej umów, w których kwota wynagrodzenia jest wielokrotnością 50 zł lub 100 zł, niż umów na inne kwoty).
The mode of wages and salaries is an important indicator describing their distribution; however, due to the strong asymmetry of the distribution of this feature in Poland, mode estimation is not a standard procedure in the analysis of the structure of wages and salaries. The aim of the article is to discuss selected methods of estimating the mode and to compare the mode estimation results obtained by means of various methods. The research is based on data on individual gross wages and salaries registered in October 2018 in Poland. The data came from a survey of the structure of wages and salaries conducted by Statistics Poland. In the case of the standard method based on the interpolation formula and histogram, the mode estimate is sensitive to the assumed span of intervals in the frequency table and the beginning of the first interval. Reducing the span of the intervals causes the mode to reach the value of the minimum wage. The application of advanced methods, including those using a kernel estimator, leads to significantly different estimates of the mode depending on the method used (the dispersion reaches the value of approximately PLN 800). Additionally, the analysis of the obtained results gives grounds to considering a thesis that wage and salary distribution is a mixture of the following distributions: discrete (for the minimum wage) and continuous (for wages and salaries above the minimum wage), and is characterised by cyclicality (in Poland, more contracts offer remunerations which are a multiple of PLN 50 or PLN 100 than remunerations for other amounts).
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2022, 67, 12; 62-79
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single Functional Index Quantile Regression for Independent Functional Data Under Right-Censoring
Regresja kwantylowa pojedynczego wskaźnika funkcjonalnego dla niezależnych danych funkcjonalnych z cenzurowaniem prawostronnym
Autorzy:
Hamri, Mohamed Mehdi
Mekki, Sanaà Dounya
Rabhi, Abbes
Kadiri, Nadia
Powiązania:
https://bibliotekanauki.pl/articles/2045982.pdf
Data publikacji:
2022
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
censored data
functional data
kernel estimator
normality
non-parametric estimation
small ball probability
dane cenzurowane
estymator jądrowy
normalność
estymacja nieparametryczna
prawdopodobieństwo small ball
Opis:
The main objective of this paper was to estimate non-parametrically the quantiles of a conditional distribution based on the single-index model in the censorship model when the sample is considered as independent and identically distributed (i.i.d.) random variables. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Then the paper gives an estimation of the quantiles by inverting this estimated cond-cdf, the asymptotic properties are stated when the observations are linked with a single-index structure. Finally, a simulation study was carried out to evaluate the performance of this estimate.
Głównym celem artykułu jest prezentacja nieparametrycznej estymacji kwantyli rozkładu warunkowego na podstawie modelu jednoindeksowego w modelu cenzury, gdy próba jest traktowana jako niezależne zmienne losowe o identycznym rozkładzie. Przede wszystkim wprowadzono estymator jądrowy dla funkcji skumulowanego rozkładu warunkowego (cond-cdf). Następnie podano oszacowanie kwantyli przez odwrócenie oszacowanego cond-cdf. Właściwości asymptotyczne są określane, gdy obserwacje są połączone ze strukturą jednoindeksową. Na koniec przeprowadzono badanie symulacyjne, aby ocenić skuteczność tego oszacowania.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2022, 1; 31-62
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single Functional Index Quantile Regression for Functional Data with Missing Data at Random
Właściwości asymptotyczne estymatorów półparametrycznych dla kwantyla warunkowego pojedynczego wskaźnika funkcjonalnego z losowymi brakami danych
Autorzy:
Kadiri, Nadia
Mekki, Sanaà Dounya
Rabhi, Abbes
Powiązania:
https://bibliotekanauki.pl/articles/21375671.pdf
Data publikacji:
2023
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
functional data analysis
functional single index process
kernel estimator
missing at random
nonparametric estimation
small ball probability
funkcjonalna analiza danych
funkcjonalny proces pojedynczego indeksu
estymator jądra
losowe braki
estymacja nieparametryczna
prawdopodobieństwo małej kuli
Opis:
The primary goal of this research was to estimate the quantile of a conditional distribution using a semi-parametric approach in the presence of randomly missing data, where the predictor variable belongs to a semi-metric space. The authors assumed a single index structure to link the explanatory and response variable. First, a kernel estimator was proposed for the conditional distribution function, assuming that the data were selected from a stationary process with missing data at random (MAR). By imposing certain general conditions, the study established the model’s uniform almost complete consistencies with convergence rates.
Głównym celem przedstawionych w artykule badań jest oszacowanie kwantyla rozkładu warunkowego przy użyciu podejścia półparametrycznego w obecności losowo brakujących danych, gdzie zmienna predykcyjna należy do przestrzeni semimetrycznej. Założono strukturę pojedynczego indeksu, aby połączyć zmienną objaśniającą i zmienną odpowiedzi. Wstępnie zaproponowano estymator jądra dla funkcji rozkładu warunkowego, zakładając, że dane są losowo wybierane z procesu stacjonarnego z brakującymi danymi (MAR). Nakładając pewne ogólne warunki, ustalono jednolitą, prawie całkowitą zgodność modelu ze współczynnikami konwergencji.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2023, 27, 3; 1-19
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Central Limit Theorem for Conditional Mode in the Single Functional Index Model with Data Missing at Random
Centralne twierdzenie graniczne dla trybu warunkowego w jednolitym funkcjonalnym modelu indeksowym z losowym brakiem danych
Autorzy:
Allal, Anis
Dib, Abdessamad
Rabhi, Abbes
Powiązania:
https://bibliotekanauki.pl/articles/31233548.pdf
Data publikacji:
2024
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
functional data analysis
functional single-index process
kernel estimator
missing at random
nonparametric estimation
small ball probability
funkcjonalna analiza danych
funkcjonalny proces pojedynczego indeksu
estymator jądra
losowe braki
estymacja nieparametryczna
prawdopodobieństwo małej kuli
Opis:
This paper concentrates on nonparametrically estimating the conditional density function and conditional mode within the single functional index model for independent data, particularly when the variable of interest is affected by randomly missing data. This involves a semi-parametric single model structure and a censoring process on the variables. The estimator's consistency (with rates) in a variety of situations, such as the framework of the single functional index model (SFIM) under the assumption of independent and identically distributed (i.i.d) data with randomly missing entries, as well as its performance under the assumption that the covariate is functional, are the main areas of focus. For this model, the nearly almost complete uniform convergence and rate of convergence established. The rates of convergence highlight the critical part that the probability of concentration play in the law of the explanatory functional variable. Additionally, we establish the asymptotic normality of the derived estimators proposed under specific mild conditions, relying on standard assumptions in Functional Data Analysis (FDA) for the proofs. Finally, we explore the practical application of our findings in constructing confidence intervals for our estimators. The rates of convergence highlight the critical part that the probability of concentration play in the law of the explanatory functional variable.
W artykule skoncentrowano się na nieparametrycznym estymowaniu warunkowej funkcji gęstości i warunkowej dominanty w modelu pojedynczego wskaźnika funkcjonalnego dla niezależnych danych, szczególnie gdy na interesującą zmienną wpływają losowo brakujące dane. Obejmuje to strukturę półparametrycznego pojedynczego modelu i proces cenzurowania zmiennych. Zgodność estymatora (ze współczynnikami) w różnych sytuacjach, np. w ramach modelu pojedynczego wskaźnika funkcjonalnego przy założeniu niezależnych i z identycznym rozkładem danych z losowymi brakami, a także jego działanie w warunkach, gdy zmienna towarzysząca jest funkcjonałem, to główne obszary zainteresowania. Dla tego modelu wyznacza się prawie całkowicie jednolitą zbieżność i wskaźnik zbieżności. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdopodobieństwo koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej. Dodatkowo ustala się asymptotyczną normalność wyprowadzonych estymatorów zaproponowanych w określonych łagodnych warunkach, opierając się na standardowych założeniach z analizy danych funkcjonalnych dla dowodów. Na koniec zbadano praktyczne zastosowanie ustaleń w konstruowaniu przedziałów ufności dla naszych estymatorów. Wskaźniki zbieżności podkreślają kluczową rolę, jaką prawdopodobieństwo koncentracji odgrywa w założeniach dotyczących objaśniającej zmiennej funkcjonalnej.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2024, 28, 1; 39-60
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies