Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "data clustering" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Selection of clustering methods for wind turbines operational data
Dobór metod grupowania danych procesowych dla turbin wiatrowych
Autorzy:
Gibiec, M.
Barszcz, T.
Bielecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/327686.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka maszyn
turbina wiatrowa
eksploracja danych
grupowanie
machine diagnostics
wind turbine
data mining
clustering
Opis:
Quickly growing number of monitored wind turbines has changed the needs for monitoring and diagnostic algorithms. The data from hundreds of monitoring systems are transferred to the diagnostic centers, where the data should be analyzed. High cost of labor created the need for automated diagnostic methods. The first task in this wide discipline is classification of the data and detection of malfunction states. The paper investigates application of data mining methods for classification of operational data from wind turbines. It is shown, that combination of the agglomeration method with the C-means clustering yields very good results and can be used for automated diagnostics of wind farms.
Szybko rosnąca liczba monitorowanych turbin wiatrowych zmieniła potrzeby w zakresie algorytmów monitorowania diagnostyki. Obecnie dane z setek systemów monitorowania przesyłane są do centrów diagnostycznych, gdzie muszą zostać przeanalizowane. Wysokie koszty pracy ekspertów spowodowały potrzebę zautomatyzowania metod diagnostycznych. Pierwszym zadaniem stała się automatyczna klasyfikacja danych i wykrywanie stanów niesprawności. Artykuł przedstawia zastosowanie metod "data mining" do klasyfikacji danych procesowych z turbin wiatrowych. Pokazano, że połączenie metody aglomeracji danych z metodą K-means daje bardzo dobre wyniki i może być zastosowane do zautomatyzowanej diagnostyki farm wiatrowych.
Źródło:
Diagnostyka; 2010, 4(56); 37-42
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clustering and filtering of measurement data based on dynamic self-organizing neural networks
Grupowanie i filtracja danych pomiarowych z wykorzystaniem dynamicznych, samoorganizujących się sieci neuronowych
Autorzy:
Gorzałczany, M. B.
Rudziński, F.
Powiązania:
https://bibliotekanauki.pl/articles/153286.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
inteligencja obliczeniowa
samoorganizujące się sieci neuronowe
grupowanie
computational intelligence
self-organizing neural networks
clustering
filtering
measurement data
Opis:
The paper presents an application of dynamic self-organizing neural networks (introduced by the same authors) to clustering of complex, multidimensional measurement-type data using as an example the so-called Synthetic Control Chart Time Series available at WWW server of the Department of Information and Computer Science, the University of California at Irvine. Moreover, after deactivation of some of the mechanisms governing the operation of the proposed networks they become efficient tools for signal and data filtering. The filtering of Equiptemp measurement data set available from Time Series Library by means of the proposed networks is also briefly presented.
Artykuł prezentuje zastosowanie tzw. dynamicznych samoorganizujących się sieci neuronowych (zaproponowanych przez autorów tej pracy) do grupowania złożonych, wielowymiarowych danych pomiarowych na przykładzie zbioru danych Synthetic Control Chart Time Series dostępnego na serwerze WWW Uniwersytetu Kalifornijskiego w Irvine (Department of Information and Computer Science). Proponowane sieci, w trakcie procesu uczenia, są w stanie dzielić swoje łańcuchy neuronów na podłańcuchy, ponownie łączyć wybrane podłańcuchy ze sobą oraz dynamicznie zmieniać całkowitą liczbę neuronów sieci. Cechy te umożliwiają im jak najlepsze dopasowanie się do nieznanych z góry struktur "zakodowanych" w danych. Funkcjonowanie proponowanych sieci zilustrowano najpierw na przykładzie złożonego zbioru danych dwuwymiarowych typu dwóch spiral. Po wyłączeniu pewnych mechanizmów rządzących funkcjonowaniem proponowanych sieci stają się one również efektywnymi narzędziami filtracji sygnałów. Przykłady filtracji danych pomiarowych zawartych w zbiorze Equiptemp pochodzącym z tzw. Time Series Library są również przedstawione w artykule.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1416-1419
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inefficiency of data mining algorithms and its architecture: with emphasis to the shortcoming of data mining algorithms on the output of the researches
Autorzy:
Tesema, Workineh
Powiązania:
https://bibliotekanauki.pl/articles/118221.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
data mining
classification
clustering
association
regression
algorithms bottleneck
pozyskiwanie danych
klasyfikacja
grupowanie
asocjacja
regresja
wąskie gardło algorytmów
Opis:
This review paper presents a shortcoming associated to data mining algorithm(s) classification, clustering, association and regression which are highly used as a tool in different research communities. Data mining researches has successfully handling large amounts of dataset to solve the problems. An increase in data sizes was brought a bottleneck on algorithms to retrieve hidden knowledge from a large volume of datasets. On the other hand, data mining algorithm(s) has been unable to analysis the same rate of growth. Data mining algorithm(s) must be efficient and visual architecture in order to effectively extract information from huge amounts of data in many data repositories or in dynamic data streams. Data visualization researchers believe in the importance of giving users an overview and insight into the data distributions. The combination of the graphical interface is permit to navigate through the complexity of statistical and data mining techniques to create powerful models. Therefore, there is an increasing need to understand the bottlenecks associated with the data mining algorithms in modern architectures and research community. This review paper basically to guide and help the researchers specifically to identify the shortcoming of data mining techniques with domain area in solving a certain problems they will explore. It also shows the research areas particularly a multimedia (where data can be sequential, audio signal, video signal, spatio-temporal, temporal, time series etc) in which data mining algorithms not yet used.
Źródło:
Applied Computer Science; 2019, 15, 3; 73-86
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A complete gradient clustering algorithm formed with kernel estimators
Autorzy:
Kulczycki, P.
Charytanowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/907781.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza danych
eksploracja danych
grupowanie
metoda statystyczna
estymacja jądrowa
obliczenia numeryczne
data analysis
data mining
clustering
gradient procedures
nonparametric statistical methods
kernel estimators
numerical calculations
Opis:
The aim of this paper is to provide a gradient clustering algorithm in its complete form, suitable for direct use without requiring a deeper statistical knowledge. The values of all parameters are effectively calculated using optimizing procedures. Moreover, an illustrative analysis of the meaning of particular parameters is shown, followed by the effects resulting from possible modifications with respect to their primarily assigned optimal values. The proposed algorithm does not demand strict assumptions regarding the desired number of clusters, which allows the obtained number to be better suited to a real data structure. Moreover, a feature specific to it is the possibility to influence the proportion between the number of clusters in areas where data elements are dense as opposed to their sparse regions. Finally, the algorithm-by the detection of one-element clusters-allows identifying atypical elements, which enables their elimination or possible designation to bigger clusters, thus increasing the homogeneity of the data set.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 123-134
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zone estimation with cluster analysis of public transport stops
Ocena strefowa z analizą skupień przystanków transportu publicznego
Autorzy:
Horváth, B.
Nagy, V.
Powiązania:
https://bibliotekanauki.pl/articles/192544.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
public transport
big data
time series
similarity matrix
clustering
transport publiczny
duże zbiory danych
szeregi czasowe
podobieństwa macierzy
grupowanie
Opis:
Nowadays the data sets are spreading continually, generated by different devices and systems. The public transport is also not an exception in this. The modern GPS based tracking systems and the electronic tickets are producing lot of data, and we could use them for improving the service level. In the right case, these data are storing, and the service suppliers are not dealing with its information content, but, on the other hand, maybe they are just deleting these, in the interest of the avoidance of digital space occupancy. However, these data are processable with the modern devices and methods, and we can use them for information obtaining. Thanks to the spread of data mining, these tools are not appearing only in marketing research but in the most various kind of scientific area too, and they are advertising a new scientific revolution. Although the importance of these data sources is essential it is not widespread in general in transport planning, only in some specific areas [1] as described by Csiszár et al. This article presents possible application of the digital raw materials, taking the public transport passengers boarding information as base. We created a three step method which could be useful in automatic zone shaping or to supervise the manually created zone borders. It is also able to give help in land-usage examinations. The procedure is effective in making traveling chains from smart card data and in creation of origin destination matrix from check-in data. In this article we are showing how the zone distribution is possible with the assistance of different distance measurement methods and clustering procedures, and we are presenting the results on the example of a selected city.
Obecnie nieustannie powstają różne zbiory danych, generowane przez różne urządzenia i systemy. Transport publiczny nie jest w tym zakresie wyjątkiem. Nowoczesne systemy monitorowania oparte na GPS i bilety elektroniczne wytwarzają duże ilości danych, i moglibyśmy je wykorzystać dla poprawy poziomu usług. Z jednej strony dane te są przechowywane, a dostawcy usług nie mają do czynienia z zawartością informacji, ale z drugiej strony, być może są one po prostu usuwane, aby ograniczyć obciążanie cyfrowej przestrzeni. Dane te mogą być przetwarzane dzięki nowoczesnym urządzeniom i metodom, i możemy je wykorzystać do uzyskania informacji. Dzięki rozprzestrzenianiu eksploracji danych, narzędzia te pojawiają się nie tylko w badaniach marketingowych, ale w większości różnych działań badawczych, i reklamują one nową rewolucję naukową. Chociaż znaczenie tych źródeł danych jest zasadnicze, nie jest to rozpowszechnione w planowaniu transportu, a jedynie w pewnych określonych obszarach [1], tak jak pisze Csiszár i in. W artykule przedstawiono możliwości zastosowania materiałów nieprzetworzonych, biorąc jako podstawę informacje o pasażerach podróżujących transportem publicznym. Stworzono metodę trzech kroków, która może być przydatna do automatycznego kształtowania strefy lub do nadzorowania granic stref utworzonych konwencjonalnie. Może też przydać się przy kontroli gruntów użytkowych. Procedura ta jest skuteczna w tworzeniu łańcuchów podróży z danych z kart inteligentnych oraz w tworzeniu macierzy żródło-cel na podstawie danych zameldowania. W artykule pokazano, w jaki sposób możliwa jest dystrybucja stref, za pomocą różnych metod pomiaru odległości i procedur gromadzenia, i zaprezentowano tego efekty na przykładzie wybranego miasta.
Źródło:
Transport Miejski i Regionalny; 2016, 7; 9-12
1732-5153
Pojawia się w:
Transport Miejski i Regionalny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies