Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy information" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Granular representation of the information potentialof variables –application example
Ziarnista reprezentacja potencjału informacyjnego zmiennych –przykład zastosowania
Autorzy:
Kiersztyn, Adam
Gandzel, Agnieszka
Celiński, Maciej
Koczan, Leopold
Powiązania:
https://bibliotekanauki.pl/articles/2070228.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
granular computing
information granules
knowledge representation
fuzzy clustering
ecological data
obliczenia ziarniste
ziarna informacji
reprezentacja wiedzy
grupowanie rozmyte
dane ekologiczne
Opis:
With the introduction to the science paradigm of Granular Computing, in particular, information granules, the way of thinking about data has changed gradually. Both specialists and scientists stopped focusing on the single data records themselves, but began to look at the analyzed data in a broader context, closer to the way people think. This kind of knowledge representation is expressed, in particular, in approaches based on linguistic modelling or fuzzy techniques such as fuzzy clustering. Therefore, especially important from the point of view of the methodology of data research, is an attempt to understand their potential as information granules. In this study, we will present special cases of using the innovative method of representing the information potential of variables with the use of information granules. In a series of numerical experiments based on both artificially generated data and ecological data on changes in bird arrival dates in the context of climate change, we demonstrate the effectiveness of the proposed approach using classic, not fuzzy measures building information granules.
Wraz z wprowadzeniem do nauki paradygmatu obliczeń ziarnistych, w szczególności ziaren informacji, sposób myślenia o danych stopniowo się zmieniał. Zarówno specjaliści, jak i naukowcy przestali skupiać się na samych rekordach pojedynczych danych, ale zaczęli patrzeć na analizowane dane w szerszym kontekście, bliższym ludzkiemu myśleniu. Ten rodzaj reprezentacji wiedzy wyraża się w szczególności w podejściach opartych na modelowaniu językowym lub technikach rozmytych, takich jak klasteryzacja rozmyta. Dlatego szczególnie ważna z punktu widzenia metodologii badania danych jest próba zrozumienia ich potencjału jako ziaren informacji. W niniejszym opracowaniu przedstawimy szczególne przypadki wykorzystania innowacyjnej metody reprezentacji potencjału informacyjnego zmiennych za pomocą ziaren informacji. W serii eksperymentów numerycznych opartych zarówno na danych generowanych sztucznie, jak i danych ekologicznych dotyczących zmian dat przylotów ptaków w kontekście zmian klimatycznych, demonstrujemy skuteczność proponowanego podejścia przy użyciu klasycznych, a nie rozmytych miar budujących ziarna informacji.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2021, 11, 3; 40--44
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Models of computational intelligence in bioinformatics
Autorzy:
Pedrycz, W.
Powiązania:
https://bibliotekanauki.pl/articles/333235.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
obliczenia granularne
logika
bioinformatyka
granulki informacji
zbiory rozmyte
zbiory przybliżone
granular computing
logics
bioinformatics
information granules
fuzzy sets
rough sets
Opis:
Computational Intelligence has emerged as a synergistic environment of Granular Computing (including fuzzy sets, rough sets, interval analysis), neural networks and evolutionary optimisation. This symbiotic framework addresses the needs of system modelling with regard to its transparency, accuracy and user friendliness. This becomes of paramount interest in various modelling in bioinformatics especially when we are concerned with decision-making processes. The objective of this study is to elaborate on the two essential features of CI that is Granular Computing and the resulting aspects of logic-oriented processing and its transparency. As the name stipulates, Granular Computing is concerned with processing carried out at a level of coherent conceptual entities - information granules. Such granules are viewed as inherently conceptual entities formed at some level of abstraction whose processing is rooted in the language of logic (especially, many valued or fuzzy logic). The logic facet of processing is cast in the realm of fuzzy logic and fuzzy sets that construct a consistent processing background necessary for operating on information granules. Several main categories of logic processing units (logic neurons) are discussed that support aggregative (and-like and or-like operators) and referential logic mechanisms (dominance, inclusion, and matching). We show how the logic neurons contribute to high functional transparency of granular processing, help capture prior domain knowledge and give rise to a diversity of the resulting models.
Źródło:
Journal of Medical Informatics & Technologies; 2003, 5; IP13-23
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New frontiers of analysis, interpretation and classification of biomedical signals: a computational intelligence framework
Autorzy:
Gacek, A.
Powiązania:
https://bibliotekanauki.pl/articles/333497.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
sygnał EKG
inteligencja obliczeniowa
zbiory rozmyte
granulki informacji
ziarnista informatyka
interpretacja
klasyfikacja
współdziałanie
ECG signals
computational intelligence
neurocomputing
fuzzy sets
information granules
granular computing
interpretation
classification
interpretability
Opis:
The methods of Computational Intelligence (CI) including a framework of Granular Computing, open promising research avenues in the realm of processing, analysis and interpretation of biomedical signals. Similarly, they augment the existing plethora of "classic" techniques of signal processing. CI comes as a highly synergistic environment in which learning abilities, knowledge representation, and global optimization mechanisms and this essential feature is of paramount interest when processing biomedical signals. We discuss the main technologies of Computational Intelligence (namely, neural networks, fuzzy sets, and evolutionary optimization), identify their focal points and elaborate on possible limitations, and stress an overall synergistic character, which ultimately gives rise to the highly symbiotic CI environment. The direct impact of the CI technology on ECG signal processing and classification is studied with a discussion on the main directions present in the literature. The design of information granules is elaborated on; their design realized on a basis of numeric data as well as pieces of domain knowledge is considered. Examples of the CI-based ECG signal processing problems are presented. We show how the concepts and algorithms of CI augment the existing classification methods used so far in the domain of ECG signal processing. A detailed construction of granular prototypes of ECG signals being more in rapport with the diversity of signals analyzed is discussed as well. ECG signals, Computational Intelligence, neurocomputing, fuzzy sets, information granules, Granular Computing, interpretation, classification, interpretability.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 17; 23-36
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies