Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "network optimisation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Przykład optymalizacji struktury sztucznej sieci neuronowej metodą algorytmów genetycznych
An example of feed forward neural network structure optimisation with genetic algorithm
Autorzy:
Grad, L.
Powiązania:
https://bibliotekanauki.pl/articles/273401.pdf
Data publikacji:
2006
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieć neuronowa
algorytmy genetyczne
optymalizacja
neural network
genetic algorithm
optimisation
Opis:
W artykule przedstawiono przykład optymalizacji struktury jednokierunkowej wielowarstwowej sztucznej sieci neuronowej metodą algorytmów genetycznych. Zaproponowano funkcję przystosowania pozwalającą ocenić jakość proponowanej struktury. Obliczenia wykonano dla sieci neuronowej rozpoznającej cyfry pisane odręcznie.
An example of feed forward neural network structure optimisation with genetic algorithm is presented. In genetic algorithm an original fitness function is applied. All calculations have been realized for a feed forward neural network, which recognizes hand-written signs.
Źródło:
Biuletyn Instytutu Automatyki i Robotyki; 2006, R. 12, nr 23, 23; 27-36
1427-3578
Pojawia się w:
Biuletyn Instytutu Automatyki i Robotyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shape Optimisation of Multi-Chamber Acoustical Plenums Using BEM, Neural Networks, and GA Method
Autorzy:
Chang, Y.-C.
Cheng, H.-C.
Chiu, M.-C.
Chien, Y.-H.
Powiązania:
https://bibliotekanauki.pl/articles/177780.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
boundary element method
plenum
centre-opening baffle
polynomial neural network model
group method of data handling
optimisation
genetic algorithm
Opis:
Research on plenums partitioned with multiple baffles in the industrial field has been exhaustive. Most researchers have explored noise reduction effects based on the transfer matrix method and the boundary element method. However, maximum noise reduction of a plenum within a constrained space, which frequently occurs in engineering problems, has been neglected. Therefore, the optimum design of multi-chamber plenums becomes essential. In this paper, two kinds of multi-chamber plenums (Case I: a two-chamber plenum that is partitioned with a centre-opening baffle; Case II: a three-chamber plenum that is partitioned with two centre-opening baffles) within a fixed space are assessed. In order to speed up the assessment of optimal plenums hybridized with multiple partitioned baffles, a simplified objective function (OBJ) is established by linking the boundary element model (BEM, developed using SYSNOISE) with a polynomial neural network fit with a series of real data – input design data (baffle dimensions) and output data approximated by BEM data in advance. To assess optimal plenums, a genetic algorithm (GA) is applied. The results reveal that the maximum value of the transmission loss (TL) can be improved at the desired frequencies. Consequently, the algorithm proposed in this study can provide an efficient way to develop optimal multi-chamber plenums for industry.
Źródło:
Archives of Acoustics; 2016, 41, 1; 43-53
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies