Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hybrid performance" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Improving estimation accuracy of metallurgical performance of industrial flotation process by using hybrid genetic algorithm – artificial neural network (GA-ANN)
Autorzy:
Allahkarami, E.
Salmani Nuri, O.
Abdollahzadeh, A.
Rezai, B.
Maghsoudi, B.
Powiązania:
https://bibliotekanauki.pl/articles/109424.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
artificial neural network
genetic algorithm
prediction
copper flotation
Opis:
In this study, a back propagation feed forward neural network, with two hidden layers (10:10:10:4), was applied to predict Cu grade and recovery in industrial flotation plant based on pH, chemical reagents dosage, size percentage of feed passing 75 μm, moisture content in feed, solid ratio, and grade of copper, molybdenum, and iron in feed. Modeling is performed basing on 92 data sets under different operating conditions. A back propagation training was carried out with initial weights randomly mode that may lead to trapping artificial neural network (ANN) into the local minima and converging slowly. So, the genetic algorithm (GA) is combined with ANN for improving the performance of the ANN by optimizing the initial weights of ANN. The results reveal that the GA-ANN model outperforms ANN model for predicting of the metallurgical performance. The hybrid GA-ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the metallurgical performance prediction.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 1; 366-378
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of thermo-electric coolers using hybrid genetic algorithm and simulated annealing
Autorzy:
Khanh, D. V. K.
Vasant, P.
Elamvazuthi, I.
Dieu, V. N.
Powiązania:
https://bibliotekanauki.pl/articles/230105.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermo-electric coolers
genetic algorithm
simulated annealing
coefficient of performance
rate of refrigeration
fitness function
Opis:
Thermo-electric Coolers (TECs) nowadays are applied in a wide range of thermal energy systems. This is due to their superior features where no refrigerant and dynamic parts are needed. TECs generate no electrical or acoustical noise and are environmentally friendly. Over the past decades, many researches were employed to improve the efficiency of TECs by enhancing the material parameters and design parameters. The material parameters are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of TECs design is to determine a set of design parameters such as leg area, leg length and the number of legs. Two elements that play an important role when considering the suitability of TECs in applications are rated of refrigeration (ROR) and coefficient of performance (COP). In this paper, the review of some previous researches will be conducted to see the diversity of optimization in the design of TECs in enhancing the performance and efficiency. After that, single-objective optimization problems (SOP) will be tested first by using Genetic Algorithm (GA) and Simulated Annealing (SA) to optimize geometry properties so that TECs will operate at near optimal conditions. Equality constraint and inequality constraint were taken into consideration.
Źródło:
Archives of Control Sciences; 2014, 24, 2; 155-176
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128163.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137348, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173628.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137348
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies