Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "approximation" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
On Mean Squared Error of Hierarchical Estimator
Autorzy:
Brodowski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/1373498.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
Hierarchial Estimator
hierarchical model
regression
function approximation
error
theorem
Opis:
In this paper a new theorem about components of the mean squared error of Hierarchical Estimator is presented. Hierarchical Estimator is a machine learning meta-algorithm that attempts to build, in an incremental and hierarchical manner, a tree of relatively simple function estimators and combine their results to achieve better accuracy than any of the individual ones. The components of the error of a node of such a tree are: weighted mean of the error of the estimator in a node and the errors of children, a non-positive term that descreases below 0 if children responses on any example dier and a term representing relative quality of an internal weighting function, which can be conservatively kept at 0 if needed. Guidelines for achieving good results based on the theorem are brie discussed.
Źródło:
Schedae Informaticae; 2011, 20; 83-99
0860-0295
2083-8476
Pojawia się w:
Schedae Informaticae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On some stability properties of polynomial functions
Autorzy:
Budzik, D.
Powiązania:
https://bibliotekanauki.pl/articles/121896.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie. Wydawnictwo Uczelniane
Tematy:
polynomial function
function approximation
stability function
funkcja wielomianowa
aproksymacja funkcji
stabilność funkcji
Opis:
In this paper we present conditions under which a function F with a control function f, in the following sense [wzór], can by uniformly approximated by a polynomial function of degree at most n.
Źródło:
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics; 2011, 16; 11-14
2450-9302
Pojawia się w:
Scientific Issues of Jan Długosz University in Częstochowa. Mathematics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementacja sztucznej sieci neuronowej w architekturze równoległej z wykorzystaniem protokołu MPI
Parallel implementation of artificial neural network with use of MPI protocol
Autorzy:
Bartecki, K.
Czorny, M.
Powiązania:
https://bibliotekanauki.pl/articles/153068.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sztuczna sieć neuronowa
architektura równoległa
aproksymacja funkcji
artificial neural network
parallel architecture
function approximation
Opis:
W artykule wskazano na pewne aspekty związane z implementacją jednokierunkowej sieci neuronowej w architekturze równoległej z wykorzystaniem standardu przesyłania komunikatów MPI. Zaprezentowany przykład zastosowania sieci dotyczy klasycznego problemu aproksymacji funkcji. Zbadano wpływ liczby uruchamianych procesów na efektywność procedury uczenia i działania sieci oraz zademonstrowano negatywny wpływ opóźnień powstałych przy przesyłaniu danych za pomocą sieci LAN.
In the paper some characteristic features concerning feed-forward neural network implementation in parallel computer architecture using MPI communication protocol are investigated. Two fundamental methods of neural network parallelization are described: neural (Fig. 1) as well as synaptic parallelization (Fig. 2). Based on the presented methods, an original application implementing feed-forward multilayer neural network was built. The application includes: a Java runtime interface (Fig. 3) and a computational module based on the MPI communication protocol. The simulation tests consisted in neural network application to classical problem of nonlinear function approximation. Effect of the number of processes on the network learning efficiency was examined (Fig. 4, Tab. 1). The negative effect of transmission time delays in the LAN is also demonstrated in the paper. The authors conclude that computational advantages of neural networks parallelization on a heterogeneous cluster consisting of several personal computers will become apparent only in the case of very complex neural networks, composed of many thousands of neurons.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 6, 6; 638-640
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Niektóre osobliwości aproksymacji neuronowej na przykładzie odwrotnego zadania kinematyki
Some peculiarities of neural approximation on example of inverse kinematic problem
Autorzy:
Bartecki, K.
Powiązania:
https://bibliotekanauki.pl/articles/155167.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sztuczna sieć neuronowa
aproksymacja funkcji
odwrotne zadanie kinematyki
artificial neural network
function approximation
inverse kinematics
Opis:
W artykule wskazano na pewne charakterystyczne aspekty związane z zastosowaniem jednokierunkowych sieci neuronowych jako uniwersalnych układów aproksymujących złożone zależności nieliniowe. Zaprezentowany przykład dotyczy klasycznego problemu z dziedziny robotyki -tzw. odwrotnego zadania kinematyki. Zademonstrowano wpływ właściwego doboru struktury sieci, jej algorytmu uczenia oraz wzorców uczących na jakość aproksymacji neuronowej.
Characteristic features of feedforward artificial neural networks, acting as universal function approximators, are presented. The problem under consideration concerns inverse kinematics of a two-link planar manipulator (Fig. 1). As shown in this paper, a two-layer, feedforward neural network is able to learn the nonlinear mapping between the end effector position domain and the joint angle domain of the manipulator (Fig. 2). However, a necessary condition for achieving the required approximation quality is proper selection of the network structure, especially with respect to the number of nonlinear, sigmoidal units in its hidden layer. Using too few neurons in this layer results in underfitting (Fig. 3), while too many neurons bring the problem of overfitting (Figs 6 and 7). The effect of learning algorithm efficiency as well as proper choice of learning data set on the network performance is also demonstrated (Fig. 8). Apart from the general conclusions concerning neural approximation, the presented results show also the possibility of neural control of robotic manipulator trajectory.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 6, 6; 589-592
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theory I: Deep networks and the curse of dimensionality
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/200623.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep network
shallow network
convolutional neural network
function approximation
deep learning
sieci neuronowe
aproksymacja funkcji
uczenie głębokie
Opis:
We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 761-773
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An enhanced differential evolution algorithmwith adaptive weight bounds for efficient training ofneural networks
Ulepszony algorytm ewolucji różnicowej z adaptacyjnymi granicami wag dla efektywnego szkolenia sieci neuronowych
Autorzy:
Limtrakul, Saithip
Wetweerapong, Jeerayut
Powiązania:
https://bibliotekanauki.pl/articles/27315365.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
neural network
differential evolution
training neural network
function approximation
sieć neuronowa
ewolucja różnicowa
trening sieci neuronowej
aproksymacja funkcji
Opis:
Artificial neural networks are essential intelligent tools for various learning tasks. Training them is challenging due to the nature of the data set, many training weights, and their dependency, which gives rise to a complicated high-dimensional error function for minimization. Thus, global optimization methods have become an alternative approach. Many variants of differential evolution (DE) have been applied as training methods to approximate the weights of a neural network. However, empirical studies show that they suffer from generally fixed weight bounds. In this research, we propose an enhanced differential evolution algorithm with adaptive weight bound adjustment (DEAW) for the efficient training of neural networks. The DEAW algorithm uses small initial weight bounds and adaptive adjustment in the mutation process. It gradually extends the bounds when a component of a mutant vector reaches its limits. We also experiment with using several scales of an activation function with the DEAW algorithm. Then, we apply the proposed method with its suitable setting to solve function approximation problems. DEAW can achieve satisfactory results compared to exact solutions.
Sztuczne sieci neuronowe są niezbędnymi inteligentnymi narzędziami do realizacji różnych zadań uczenia się. Ich szkolenie stanowi wyzwanie ze względu na charakter zbioru danych, wiele wag treningowych i ich zależności, co powoduje powstanie skomplikowanej, wielowymiarowej funkcji błędu do minimalizacji. Dlatego alternatywnym podejściem stały się metody optymalizacji globalnej. Wiele wariantów ewolucji różnicowej (DE) zostało zastosowanych jako metody treningowe do aproksymacji wag sieci neuronowej. Jednak badania empiryczne pokazują, że cierpią one z powodu ogólnie ustalonych granic wag. W tym badaniu proponujemy ulepszony algorytm ewolucji różnicowej z adaptacyjnym dopasowaniem granic wag (DEAW) dla efektywnego szkolenia sieci neuronowych. Algorytm DEAW wykorzystuje małe początkowe granice wag i adaptacyjne dostosowanie w procesie mutacji. Stopniowo rozszerza on granice, gdy składowa wektora mutacji osiąga swoje granice. Eksperymentujemy również z wykorzystaniem kilku skal funkcji aktywacji z algorytmem DEAW. Następnie, stosujemy proponowaną metodę z jej odpowiednim ustawieniem do rozwiązywania problemów aproksymacji funkcji. DEAW może osiągnąć zadowalające rezultaty w porównaniu z rozwiązaniami dokładnymi.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 1; 4--13
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Singular integration in boundary element method for Helmholtz equation formulated in frequency domain
Całki osobliwe w metodzie elementów brzegowych dla równania Helmholtza sformułowanego w przestrzeni częstotliwości
Autorzy:
Rymarczyk, Tomasz
Sikora, Jan
Powiązania:
https://bibliotekanauki.pl/articles/2070239.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
partial differential equations
numerical analysis
function approximation
integral equations
równania różniczkowe cząstkowe
analiza numeryczna
aproksymacja funkcji
równania całkowe
Opis:
Two ways of approximation of the BEM kernel singularity are presented in this paper. Based on these approximations extensive error analysis was carried on. As a criterion the preciseness and simplicity of approximation were selected. Simplicity because such approach would be applied for the tomography problems, so time of execution plays particularly significant role. One of the approximations which could be applied for the wide range of the arguments of the kernel were selected.
Dwie metody aproksymacji osobliwości funkcji Greena zaproponowano w tej pracy. Bazując na tych aproksymacjach dokonano wnikliwej analizy błędów. Jako kryterium wybrano dokładność i prostotę zaproponowanych aproksymacji. Prostotę dlatego, że takie podejście będzie proponowane w zagadnieniach tomograficznych. Tak więc czas odgrywa zasadniczą rolę. Wybrano aproksymację, która może być stosowana dla szerokiego zakresu argumentów.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2021, 11, 4; 4--8
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Separation of groups of free radicals from noised EPR spectrum using genetic algorithm and gradient method
Autorzy:
Bernas, M.
Ramos, P.
Powiązania:
https://bibliotekanauki.pl/articles/951652.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
signal filtering
genetic algorithms
spectra analysis
free radicals
EPR spectroscopy
function approximation
filtrowanie sygnału
algorytmy genetyczne
analiza widma
wolne rodniki
spektroskopia EPR
aproksymacja funkcji
Opis:
Different groups of free radicals exist in biological material like animal tissues or plants parts. The processes like heating or cooling creates additional types of free radicals groups in this organic matter, due to changes in chemical bonds. The paper proposes a method to determine types and concentrations of different groups of free radicals in the matter processed in various temperatures. The method extracts the spectrum of free radicals using electron paramagnetic resonance with the microwave power of 2.2 mW. Then an automatic method to find a best possible fit using limited number of theoretical mathematical functions is proposed. The match is found using spectrum filtration, and a genetic algorithm implementation supported by a Gradient Method. The obtained results were compared against the samples prepared by an expert. Finally, some remarks were given and new possibilities for future research were proposed.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 117-123
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies