Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Studzinski, J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Prognozowanie obciążenia hydraulicznego miejskiego systemu wodociągowego z wykorzystaniem modeli rozmytych typu TSK
Forecasting hydraulic load of urban water supply system using TSK fuzzy models
Autorzy:
Stachura, M.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/237351.pdf
Data publikacji:
2014
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
Sieć wodociągowa
pobór wody
modelowanie
prognozowanie
Water supply system
water demand
modeling
forecasting
Opis:
Przedstawiono możliwości prognozowania dobowego poboru wody w miejskim systemie wodociągowym. W tym celu wykorzystano modele o strukturze Takagi-Sugeno-Kanga (TSK), w których następnikiem jest klasyczny model liniowy uwzględniający dynamikę, co pozwala na określenie ich struktury jako „modeli liniowych rozmywanych strefowo”. W przeprowadzonych rozważaniach wykorzystano dane (o liczebności 974) pochodzące z sieci wodociągowej Rzeszowa obejmujące przedział czasu od 01-07-2005 do 29-02-2008. Na podstawie zarejestrowanych danych porównano tygodniowe wartości poboru wody w różnych porach roku. Kolejno przedstawiono modele TSK oraz sposób ich wyznaczania. Wykazano, że modelowanie może odbyć się w oparciu o znajomość tygodniowych zmian poboru wody, a wynikowy model pozwala prognozować wartości poboru wody w szerokim zakresie zmienności. Uzyskane wyniki przy różnych kombinacjach rozmywania i doboru struktury konkluzji modelu były porównywalne, z czego wynika, że wykorzystywana metoda wyznaczania modeli rozmytych może być stosowana do określania właściwości dynamicznych procesów, w przypadku których nie jest znany dokładny opis modelowanych zjawisk.
The paper presents possibilities of daily water demand forecasting for municipal water supply system. For this purpose, Takagi-Sugeno-Kang’s (TSK) models were applied. In this type of models the conclusion is in the form of a classical linear function, which allows describing their structure as ‛fuzzified linear models’. For the purpose of this study data from the water supply network for the city of Rzeszow was used (974 samples). It covered the period from 1 July 2005 to 29 February 2008. Based on the collected data weakly water demand values were compared for different seasons. Subsequent TSK models were described together with the way they were developed. It was shown that modeling could be based on weakly water demand data and that resulting model allowed predicting water demand values over a wide range of variability. The results received for different combinations of fuzzification and model conclusion structure selection were comparable. Therefore, it could be concluded that the method used for fuzzy model development might be used to determine dynamic properties of the processes for which the exact description of modeled phenomena was unknown.
Źródło:
Ochrona Środowiska; 2014, 36, 1; 57-60
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena wpływu zmiennych wejściowych i struktury modelu sztucznej sieci neuronowej na prognozowanie dopływu ścieków komunalnych do oczyszczalni
Impact assessment of input variables and ANN model structure on forecasting wastewater inflow into sewage treatment plants
Autorzy:
Bartkiewicz, L.
Szelag, B.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/237035.pdf
Data publikacji:
2016
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
oczyszczalnia ścieków
dopływ ścieków
modelowanie
prognozowanie
SSN
współczynnik korelacji
sewage treatment plant
wastewater inflow
modeling
forecasting
ANN
correlation coefficient
Opis:
Ze względu na stochastyczny charakter zjawiska dopływu ścieków do oczyszczalni, występują duże nierównomierności zarówno ilości, jak i jakości ścieków, co ma znaczący wpływ na funkcjonowanie obiektów technologicznych oczyszczalni. Z tego względu celowe jest prognozowanie wartości dopływu ścieków, co pozwala na przygotowanie obiektu na występowanie zdarzeń anormalnych, mogących doprowadzić do zaburzeń w działaniu urządzeń oczyszczalni. W artykule przedstawiono wyniki modelowania wartości dopływu ścieków z zastosowaniem sztucznych sieci neuronowych. W przeprowadzonych analizach wykorzystano wyniki trzyletnich pomiarów wysokości opadów atmosferycznych oraz dopływu ścieków komunalnych do miejskich oczyszczalni w Rzeszowie i Kielcach. Do oceny wpływu zmiennych objaśniających na jakość modelu zastosowano metodę regresji logistycznej. Uwzględniono takie zmienne, jak wysokość opadów atmosferycznych oraz dobowy dopływ ścieków do oczyszczalni, które były odpowiednio opóźnione w stosunku do wartości prognozowanej. Zbadano także wpływ parametrów struktury rozpatrywanego modelu na dokładność prognozy tworzonych modeli matematycznych.
Due to a stochastic nature of sewage inflow into a treatment plant the inflow amount and its quality are highly variable which has a significant impact on the plant technological objects operation. Hence, sewage inflow forecasting would be desirable as it allows for mitigating the impact of abnormal events that might lead to major plant installation disruption. This paper presents the results of a raw sewage inflow modeling using Artificial Neural Networks (ANNs). Results of the three-year measurements of precipitation rates and sewage treatment plant inflow in Rzeszow and Kielce were used in the analyses. To assess the impact of exogenous variables on the model quality the logistic regression method was applied. The variables considered were the precipitation rate and daily sewage inflow, which were appropriately delayed in relation to the forecasted inflow values. Impact of the model structure parameters on accuracy of the mathematical model forecasts was also investigated.
Źródło:
Ochrona Środowiska; 2016, 38, 2; 29-36
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w odpływie z oczyszczalni ścieków
Application of artificial neural networks to forecasting total nitrogen content in secondary effluent from treatment plants
Autorzy:
Wąsik, E.
Chmielowski, K.
Studziński, J.
Szeląg, B.
Powiązania:
https://bibliotekanauki.pl/articles/237416.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
ścieki oczyszczone
modelowanie
prognozowanie
sztuczne sieci neuronowe
azot ogólny
azot amonowy
azotyny
azotany
azot organiczny
sewage
secondary effluent
modeling
forecasting
artificial neural networks
total nitrogen
ammonia nitrogen
nitrites
nitrates
organic nitrogen
Opis:
Zaprezentowano możliwość wykorzystania sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w ściekach oczyszczonych w funkcji jego różnych postaci występujących w odpływie z oczyszczalni ścieków. W badaniach zastosowano dane z lat 2010–2016, zawierające pomiary zawartości związków azotu w ściekach odpływających z oczyszczalni obsługującej aglomerację o równoważnej liczbie mieszkańców powyżej 100000. Zbiór danych wejściowych został wstępnie poddany analizie skupień i następnie wykorzystany do trenowania sieci neuronowej w postaci perceptronu wielowarstwowego. Na podstawie uzyskanych symulacji stwierdzono, że najmniejsze wartości błędów prognozy ilosci azotu ogólnego (2÷3%) uzyskano w wariancie, gdy jego wartość była funkcją wszystkich postaci azotu występujących w oczyszczonych ściekach. W przypadku modelu wykorzystującego jedynie dane o zawartości azotu nieorganicznego oraz azotanów otrzymane wyniki symulacji niewiele różniły się od wartości rzeczywistych, na co wskazuje bardzo duża wartość współczynnika korelacji (>97%). Wartość średniego błędu bezwzględnego w tym przypadku zwiększyła się tylko o około 4 punkty procentowe do wartości 6,2% (proces uczenia) oraz 6,9% (proces testowania/walidacji) w stosunku do symulacji wykorzystującej wszystkie postacie azotu w ściekach.
Potential application of artifi cial neural networks (ANN) to forecast total nitrogen content (TNC) in treated wastewater was presented as a function of selected nitrogen forms present in the secondary effl uent. The analyzed data from the period of 2010–2016 covered measurements of the nitrogen content in the effl uent from the treatment plant servicing agglomeration with a population equivalent of more than 100,000. The input data set was initially subjected to cluster analysis and then, used to train a neural network in the form of a multilayer perceptron (MLP). The simulations demonstrated that the smallest error values for the forecast of TNC (2–3%) were obtained for the variant, the value of which was a function of all the forms of nitrogen present in the secondary effl uent. For the total nitrogen model based on inorganic nitrogen and nitrates data only, the simulation results did not differ signifi cantly from the actual values, as indicated by a very high correlation coeffi cient (over 97%). In this case, the value of the mean absolute error increased only by nearly 4% to 6.2% (learning process) or 6.9% (testing/validation process), compared to the simulation based on all the nitrogen forms in the sewage.
Źródło:
Ochrona Środowiska; 2018, 40, 1; 29-33
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies