Ocena wpływu zmiennych wejściowych i struktury modelu sztucznej sieci neuronowej na prognozowanie dopływu ścieków komunalnych do oczyszczalni Impact assessment of input variables and ANN model structure on forecasting wastewater inflow into sewage treatment plants
Ze względu na stochastyczny charakter zjawiska dopływu ścieków do oczyszczalni, występują duże nierównomierności zarówno ilości, jak i jakości ścieków, co ma znaczący wpływ na funkcjonowanie obiektów technologicznych oczyszczalni. Z tego względu celowe jest prognozowanie wartości dopływu ścieków, co pozwala na przygotowanie obiektu na występowanie zdarzeń anormalnych, mogących doprowadzić do zaburzeń w działaniu urządzeń oczyszczalni. W artykule przedstawiono wyniki modelowania wartości dopływu ścieków z zastosowaniem sztucznych sieci neuronowych. W przeprowadzonych analizach wykorzystano wyniki trzyletnich pomiarów wysokości opadów atmosferycznych oraz dopływu ścieków komunalnych do miejskich oczyszczalni w Rzeszowie i Kielcach. Do oceny wpływu zmiennych objaśniających na jakość modelu zastosowano metodę regresji logistycznej. Uwzględniono takie zmienne, jak wysokość opadów atmosferycznych oraz dobowy dopływ ścieków do oczyszczalni, które były odpowiednio opóźnione w stosunku do wartości prognozowanej. Zbadano także wpływ parametrów struktury rozpatrywanego modelu na dokładność prognozy tworzonych modeli matematycznych.
Due to a stochastic nature of sewage inflow into a treatment plant the inflow amount and its quality are highly variable which has a significant impact on the plant technological objects operation. Hence, sewage inflow forecasting would be desirable as it allows for mitigating the impact of abnormal events that might lead to major plant installation disruption. This paper presents the results of a raw sewage inflow modeling using Artificial Neural Networks (ANNs). Results of the three-year measurements of precipitation rates and sewage treatment plant inflow in Rzeszow and Kielce were used in the analyses. To assess the impact of exogenous variables on the model quality the logistic regression method was applied. The variables considered were the precipitation rate and daily sewage inflow, which were appropriately delayed in relation to the forecasted inflow values. Impact of the model structure parameters on accuracy of the mathematical model forecasts was also investigated.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00