Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wykrywanie błędu" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Parameter Estimation Based Fault Detection and Isolation in Wiener and Hammerstein Systems
Autorzy:
Janczak, A.
Powiązania:
https://bibliotekanauki.pl/articles/908281.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wykrywanie błędu
wyodrębnienie błędu
estymacja parametryczna
sieć neuronowa
system nieliniowy
fault detection
fault isolation
parameter estimation
neural networks
nonlinear system
Opis:
Fault detection and isolation in Wiener and Hammerstein systems via generation and processing of residual sequences is considered. We assume that some models of the unfaulty Wiener and Hammerstein systems under consideration are known. For Wiener systems, we also assume that their static nonlinear subsystems are invertible. Then, based on a serial-parallel definition of the residual error, new fault detection and isolation methods are proposed.To detect and identify all the changes in both the Wiener and Hammerstein system parameters, the sequences of residuals are processed by using linear regression methods or a neural network approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 711-735
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Expert System Coupled With a Hierarchical Structure of Fuzzy Neural Networks for Fault Diagnosis
Autorzy:
Calado, J. M. F.
Costa, I. S.
Powiązania:
https://bibliotekanauki.pl/articles/908283.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rozpoznanie błędu
wykrywanie błędu
system ekspertowy
sieć neuronowa rozmyta
fault diagnosis
fault detection
fault isolation
shallow knowledge
deep knowledge
expert system
fuzzy neural network
abrupt faults
incipient faults
Opis:
An on-line fault diagnosis system, designed to be robust to the normal transient behaviour of the process, is described. The overall system consists of an expert system cascade with a hierarchical structure of fuzzy neural networks, corresponding to a multi-stage fault detection and isolation system. The fault detection is performed through the expert system by means of fault detection heuristic rules, generated from deep and shallow knowledge of the process under consideration. If a fault is detected, the hierarchical structure of fuzzy neural networks starts and it performs the fault isolation task. The structure of this diagnosis system was designed to allow for the diagnosis of single and multiple simultaneous abrupt and incipient faults from only single abrupt fault symptoms. Also, it combines the advantages of both fuzzy reasoning and neural networks learning capacity. A continuous binary distillation column has been used as a test bed of the current approach. Single, double and triple simultaneous abrupt faults, as well as incipient faults, have been considered. The preliminary results obtained show a good accuracy, even in the case of multiple faults.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 667-687
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic Neural Networks for Process Modelling in Fault Detection and Isolation Systems
Autorzy:
Korbicz, J.
Patan, K.
Obuchowicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/908291.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
wykrywanie błędu
sieć neuronowa dynamiczna
modelowanie nieliniowe
algorytm inteligentny
fault detection
dynamic neural networks
non-linear modelling
learning algorithms
FL-classifier
two-tank system
Opis:
A fault diagnosis scheme for unknown nonlinear dynamic systems with modules of residual generation and residual evaluation is considered. Main emphasis is placed upon designing a bank of neural networks with dynamic neurons that model a system diagnosed at normal and faulty operating points.To improve the quality of neural modelling, two optimization problems are included in the construction of such dynamic networks: searching for an optimal network architecture and the network training algorithm. To find a good solution, the effective well-known cascade-correlation algorithm is adapted here. The residuals generated by a bank of neural models are then evaluated by means of pattern classification. To illustrate the effectiveness of our approach, two applications are presented: a neural model of Narendra's system and a fault detection and identification system for the two-tank process.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 519-546
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault-tolerant tracking control for a non-linear twin-rotor system under ellipsoidal bounding
Autorzy:
Kukurowski, Norbert
Mrugalski, Marcin
Pazera, Marcin
Witczak, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/2124781.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault tolerant control
simultaneous fault
external disturbances
nonlinear system
robust fault estimation
fault detection
fault diagnosis
sterowanie tolerujące uszkodzenia
uszkodzenie równoczesne
zakłócenia zewnętrzne
układ nieliniowy
szacowanie błędu
wykrywanie uszkodzenia
diagnoza uszkodzenia
Opis:
A novel fault-tolerant tracking control scheme based on an adaptive robust observer for non-linear systems is proposed. Additionally, it is presumed that the non-linear system may be faulty, i.e., affected by actuator and sensor faults along with the disturbances, simultaneously. Accordingly, the stability of the robust observer as well as the fault-tolerant tracking controller is achieved by using the ℋ∞ approach. Furthermore, unknown actuator and sensor faults and states are bounded by the uncertainty intervals for estimation quality assessment as well as reliable fault diagnosis. This means that narrow intervals accompany better estimation quality. Thus, to cope with the above difficulty, it is assumed that the disturbances are over-bounded by an ellipsoid. Consequently, the performance and correctness of the proposed fault-tolerant tracking control scheme are verified by using a non-linear twin-rotor aerodynamical laboratory system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 2; 171--183
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies