- Tytuł:
- On \(C^{(n)}\)-Almost Periodic Solutions to Some Nonautonomous Differential Equations in Banach Spaces
- Autorzy:
-
Baillon, Jean-Bernard
Blot, Joël
N'Guérékata, Gaston M.
Pennequin, Denis - Powiązania:
- https://bibliotekanauki.pl/articles/746570.pdf
- Data publikacji:
- 2006
- Wydawca:
- Polskie Towarzystwo Matematyczne
- Tematy:
-
\(C^{(n)}\)-almost periodic function
family of bounded operators
exponentially stable
Acquistapace-Terreni conditions
uniform spectrum of bounded functions - Opis:
- In this paper we prove the existence and uniqueness of \(C^{(n)}\)-almost periodic solutions to the nonautonomous ordinary differential equation \(x'(t) = A(t)x(t) + f(t)\), \(t\in\mathbb{R}\), where \(A(t)\) generates an exponentially stable family of operators \((U (t, s))\) \(t\geq s\) and \(f\) is a \(C^{(n)}\)-almost periodic function with values in a Banach space \(X\). We also study a Volterra-like equation with a \(C^{(n)}\)-almost periodic solution.
- Źródło:
-
Commentationes Mathematicae; 2006, 46, 2
0373-8299 - Pojawia się w:
- Commentationes Mathematicae
- Dostawca treści:
- Biblioteka Nauki