In this paper we prove the existence and uniqueness of \(C^{(n)}\)-almost periodic solutions to the nonautonomous ordinary differential equation \(x'(t) = A(t)x(t) + f(t)\), \(t\in\mathbb{R}\), where \(A(t)\) generates an exponentially stable family of operators \((U (t, s))\) \(t\geq s\) and \(f\) is a \(C^{(n)}\)-almost periodic function with values in a Banach space \(X\). We also study a Volterra-like equation with a \(C^{(n)}\)-almost periodic solution.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00