Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

On \(C^{(n)}\)-Almost Periodic Solutions to Some Nonautonomous Differential Equations in Banach Spaces

Tytuł:
On \(C^{(n)}\)-Almost Periodic Solutions to Some Nonautonomous Differential Equations in Banach Spaces
Autorzy:
Baillon, Jean-Bernard
Blot, Joël
N'Guérékata, Gaston M.
Pennequin, Denis
Powiązania:
https://bibliotekanauki.pl/articles/746570.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
\(C^{(n)}\)-almost periodic function
family of bounded operators
exponentially stable
Acquistapace-Terreni conditions
uniform spectrum of bounded functions
Źródło:
Commentationes Mathematicae; 2006, 46, 2
0373-8299
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 3.0 Unported
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper we prove the existence and uniqueness of \(C^{(n)}\)-almost periodic solutions to the nonautonomous ordinary differential equation \(x'(t) = A(t)x(t) + f(t)\), \(t\in\mathbb{R}\), where \(A(t)\) generates an exponentially stable family of operators \((U (t, s))\) \(t\geq s\) and \(f\) is a \(C^{(n)}\)-almost periodic function with values in a Banach space \(X\). We also study a Volterra-like equation with a \(C^{(n)}\)-almost periodic solution.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies