Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Diesel engine emissions" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Comperative analysis of emision from engine fuelled with diesel and bio-diesel
Autorzy:
Koszałka, G.
Hunicz, J.
Kordos, P.
Powiązania:
https://bibliotekanauki.pl/articles/242081.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
diesel engine
alternative fuel
bio-diesel
exhaust emissions
Opis:
The paper presents comparative analysis of operational parameters, smoke emission and toxic components contents in exhaust gases of a compression ignition engine fuelled with fossil diesel, commercial bio-diesel (fatty acid methyl ester) and their blend. Measurements were conducted on an older generation diesel engine equipped with in-line injection pump. Engine was operated in conditions of full load rotational speed characteristic and also ESC steady-state test cycle. Fourier Transform Infrared (FTIR) analytical system provided contents of 23 exhaust gas components. In particular chosen parameters of investigated fuels (on the base of quality reports), performance and fuel consumption characteristic versus rotational speed, smoke emission (D) and content of carbon monoxide (CO), unburned hydrocarbons (THC) and nitrogen oxides (NOx), sulphur dioxide (S02) and carbon dioxide (CO2) in exhaust gas of the engine fuelled with investigated fuels, emission of specific hydrocarbons of the engine fuelled with investigated fuels, of non-regulated compounds measured during the research, molar mass of analyzed exhaust compounds are presented in the paper.
Źródło:
Journal of KONES; 2009, 16, 3; 165-171
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of aviation fuel JP-8 and diesel fuel blends on engine performance and exhaust emissions
Autorzy:
Labeckas, G.
Slavinskas, S.
Vilutienė, V.
Powiązania:
https://bibliotekanauki.pl/articles/949492.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
diesel engine
jet fuel
diesel fuel
autoignition
combustion
performance
exhaust emissions
Opis:
The article presents bench test results of a four-stroke, four-cylinder, naturally aspirated, DI diesel engine operating with neat JP-8 fuel (J) and its blends with Diesel fuel (D) in following proportions by volume: 90/10 (J+10D), 70/30 (J+D30), 50/ 50 (J+D50), 30/70 (J+D70), and 100% diesel fuel (DF). The purpose of the research was to analyse and compare changes occurred in the autoignition delay, combustion events, engine performance efficiency, emissions, and smoke of the exhaust when running on JP-8 fuel, jet-diesel fuel blends, and diesel fuel at a full (100%) engine load and speed of 1400 min–1 at which maximum torque occurs and rated speed of 2200 min–1. It was found that the start of injection (SOI) and the start of combustion (SOC) occurred earlier in an engine cycle and the autoignition delay decreased by 9.0% and 12.7% due to replacement of aviation JP-8 fuel with diesel fuel at a full load and the latter speeds. Maximum in-cylinder pressure was 6.8% and 4.0% higher when operating with diesel fuel, whereas brake thermal efficiency was 3.3% and 7.7% higher, and brake specific fuel consumption 2.8% and 7.0% lower when using fuel blend J+D50 compared with the respective values measured with neat JP-8 fuel. Emissions of nitric oxide (NO) and nitrogen oxides (NOx) were 13.3% and 13.1% higher from a straight diesel running at speed of 1400 min–1, and 19.0% and 19.5% higher at a higher speed of 2200 min–1. The carbon monoxide (CO) emissions and total unburned hydrocarbons (HC) decreased 2.1 times and by 12.3% when running with fuel blend J+D70 at speed of 2200 min–1 compared with those values measured with jet fuel. Smoke of the exhaust was 53.1% and 1.9% higher when using fuel blend J+D10 than that of 46.9% and 70.0% measured with jet fuel at speeds of 1400 and 2200 min–1. The engine produced 34.5% more smoke from combustion of fuel blend J+D70 at the low speed of 1400 min–1, but smoke converted to be 11.3% lower when operating at a higher speed of 2200 min–1.
Źródło:
Journal of KONES; 2015, 22, 2; 129-138
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of fuel dose division on the emission of toxic components in the car Diesel engine exhaust gas
Autorzy:
Pietras, D.
Powiązania:
https://bibliotekanauki.pl/articles/259658.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
exhaust opacity
exhaust emissions
diesel engine
common rail
fuel dose division
Opis:
The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and carbon oxide. In the experiment the contents of nitrogen oxides markedly increased with the increasing injection advance angle for the undivided dose and that divided into two parts. This, in turn, led to the decrease of the contents of hydrocarbons and carbon oxide. Fuel dose division into two and three parts leads to the increase of smoke opacity of the exhaust gas, compared to the undivided dose.
Źródło:
Polish Maritime Research; 2016, 3; 58-63
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improvement of BSFC and effective NOx and PM reduction by high EGR rates in heavy duty diesel engine
Autorzy:
Aoyagi, Y.
Powiązania:
https://bibliotekanauki.pl/articles/133188.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
diesel engine
exhaust emissions
turbocharger
fuel injection
silnik diesla
emisja spalin
turbodoładowanie
wtrysk paliwa
Opis:
The test engine was a turbocharged 10.5L engine with an intercooler. A performance target was set at a rated power of 300 kW (BMEP = 1.7 MPa) and peak torque of 1842 Nm (BMEP = 2.2 MPa). Emission targets were set at a level of near future and stringent regulation standards in Japan. The engine was equipped with new technologies such as a high pressure common rail system, FCD piston, a high pressure ratio VGT and an aftertreatment system. The high and low pressure loop EGR system was installed and this system with a VGT had a high performance and could increase an EGR rate in order to reduce BSNOx while maintaining the satisfied BSFC and PM performance simultaneously not only in the steady state condition but also in the transient condition.
Źródło:
Combustion Engines; 2017, 56, 4; 4-10
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance and emissions of a single cylinder diesel engine operating with rapeseed oil and jP-8 fuel blends
Autorzy:
Labeckas, G.
Kanapkienė, I.
Powiązania:
https://bibliotekanauki.pl/articles/133075.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
diesel engine
rapeseed oil
JP-8 fuel
engine performance
exhaust emissions
silnik spalinowy
olej rzepakowy
wydajność silnika
emisja spalin
Opis:
The article presents experimental test results of a DI single-cylinder, air-cooled diesel engine FL 511 operating with the normal (class 2) diesel fuel (DF), rapeseed oil (RO) and its 10%, 20% and 30% (v/v) blends with aviation-turbine fuel JP-8 (NATO code F-34). The purpose of the research was to analyse the effects of using various rapeseed oil and jet fuel RO90, RO80 and RO70 blends on brake specific fuel consumption, brake thermal efficiency, emissions and smoke of the exhaust. The test results of engine operation with various rapeseed oil and jet fuel blends compared with the respective parameters obtained when operating with neat rapeseed oil and those a straight diesel develops at full (100%) engine load and maximum brake torque speed of 2000 rpm. The research results showed that jet fuel added to rapeseed oil allows to decrease the value of kinematic viscosity making such blends suitable for the diesel engines. Using of rapeseed oil and jet fuel blends proved themselves as an effective measure to maintain fuel-efficient performance of a Didiesel engine. The brake specific fuel consumption decreased by about 6.1% (313.4 g/kW·h) and brake thermal efficiency increase by nearly 1.0% (0.296) compared with the respective values a fully (100%) loaded engine fuelled with pure RO at the same test conditions. The maximum NOx emission was up to 13.7% higher, but the CO emissions and smoke opacity of the exhaust 50.0% and 3.4% lower, respectively, for the engine powered with biofuel blend RO70 compared with those values produced by the combustion of neat rapeseed oil at full (100%) engine load and speed of 2000 rpm.
Źródło:
Combustion Engines; 2015, 54, 3; 13-18
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measurement of flame temperature and soot amount for effective NOx and PM reduction in a heavy duty diesel engine
Autorzy:
Aoyagi, Yuzo
Powiązania:
https://bibliotekanauki.pl/articles/132846.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
Diesel engine
exhaust emissions
NOx
PM
EGR
BSFC
flame temperature
two-color method
video camera
silnik Diesla
emisje spalin
temperatura płomienia
metoda dwubarwowa
kamera wideo
Opis:
To reduce exhaust NOx and smoke, it is important to measure flame temperature and soot amount in combustion chamber. In diesel combustion it is effective to use the two-color method for the measurement of the flame temperature and KL factor, which is related with soot concentration. The diesel flame was directly and continuously observed from the combustion chamber at running engine condition by using a bore scope and a high-speed video camera. The experimental single cylinder engine has 2.0-liter displacement and has the ability with up to five times of the boost pressure than the naturally aspirated engine by external super-charger. The devices of High Boost, Wide Range and High EGR rate at keeping a relatively high excess air ratio were installed in this research engine in order to reduce exhaust NOx emission without smoke deterioration from diesel engines. The video camera nac GX-1 was used in this study. From observed data under the changing EGR rates, the flame temperature and KL factor were obtained by the software of two-color method analysis. The diesel combustion processes are understood well by analyzing high-speed movies of the diesel flame motion and its temperature. The NOx and smoke are mutually related to maximum flame temperature and also it is possible to reduce simultaneously both NOx and soot emissions by high EGR rate in a single cylinder diesel engine.
Źródło:
Combustion Engines; 2019, 58, 4; 32-39
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies