Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Emam, M." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Performance evaluation of different universal steganalysis techniques in JPG files
Autorzy:
Emam, A. M.
Ouf, M. M.
Powiązania:
https://bibliotekanauki.pl/articles/106230.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
steganalysis
evaluation
hidden data in files
Opis:
Steganalysis is the art of detecting the presence of hidden data in files. In the last few years, there have been a lot of methods provided for steganalysis. Each method gives a good result depending on the hiding method. This paper aims at the evaluation of five universal steganalysis techniques which are “Wavelet based steganalysis”, “Feature Based Steganalysis”, “Moments of characteristic function using wavelet decomposition based steganalysis”, “Empirical Transition Matrix in DCT Domain based steganalysis”, and “Statistical Moment using jpeg2D array and 2D characteristic function”. A large Dataset of Images -1000 images- are subjected to three types of steganographic techniques which are “Outguess”, “F5” and “Model Based” with the embedding rate of 0.05, 0.1, and 0.2. It was followed by extracting the steganalysis feature used by each steganalysis technique for the stego images as well as the cover image. Then half of the images are devoted to train the classifier. The Support vector machine with a linear kernel is used in this study. The trained classifier is then used to test the other half of images, and the reading is reported The “Empirical Transition Matrix in DCT Domain based steganalysis” achieves the highest values among all the properties measured and it becomes the first choice for the universal steganalysis technique.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2012, 12, 3; 121-139
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies