Steganalysis is the art of detecting the presence of hidden data in files. In the last few years, there have been a lot of methods provided for steganalysis. Each method gives a good result depending on the hiding method. This paper aims at the evaluation of five universal steganalysis techniques which are “Wavelet based steganalysis”, “Feature Based Steganalysis”, “Moments of characteristic function using wavelet decomposition based steganalysis”, “Empirical Transition Matrix in DCT Domain based steganalysis”, and “Statistical Moment using jpeg2D array and 2D characteristic function”. A large Dataset of Images -1000 images- are subjected to three types of steganographic techniques which are “Outguess”, “F5” and “Model Based” with the embedding rate of 0.05, 0.1, and 0.2. It was followed by extracting the steganalysis feature used by each steganalysis technique for the stego images as well as the cover image. Then half of the images are devoted to train the classifier. The Support vector machine with a linear kernel is used in this study. The trained classifier is then used to test the other half of images, and the reading is reported The “Empirical Transition Matrix in DCT Domain based steganalysis” achieves the highest values among all the properties measured and it becomes the first choice for the universal steganalysis technique.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00