Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian estimation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Real-time parameter estimation study for inertia properties of ground vehicles
Metody estymacji parametrów w czasie rzeczywistym dla wyznaczania właściwości inercyjnych pojazdu terenowego
Autorzy:
Kolansky, J.
Sandu, C.
Powiązania:
https://bibliotekanauki.pl/articles/139960.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
parameter estimation
EKF
polynomial chaos
bayesian statistics
estymacja parametrów
chaos wielomianowy
statystyka bayesowska
Opis:
Vehicle parameters have a significant impact on handling, stability, and rollover propensity. This study demonstrates two methods that estimate the inertia values of a ground vehicle in real-time. Through the use of the Generalized Polynomial Chaos (gPC) technique for propagating the uncertainties, the uncertain vehicle model outputs a probability density function for each of the variables. These probability density functions (PDFs) can be used to estimate the values of the parameters through several statistical methods. The method used here is the Maximum A-Posteriori (MAP) estimate. The MAP estimate maximizes the distribution of P(β ׀z) where β is the vector of the PDFs of the parameters and z is the measurable sensor comparison. An alternative method is the application of an adaptive filtering method. The Kalman Filter is an example of an adaptive filter. This method, when blended with the gPC theory is capable at each time step of updating the PDFs of the parameter distributions. These PDF’s have their median values shifted by the filter to approximate the actual values.
Parametry pojazdu mają znaczny wpływ na jego właściwości, takie jak sterowalność, stabilność i odporność na wywrócenie. W pracy przedstawiono dwie metody estymacji parametrów inercyjnych pojazdu terenowego w czasie rzeczywistym. W modelu pojazdu z niepewnościami wyznacza się funkcje gęstości prawdopodobieństwa (PDF) dla każdej wielkości opisując propagację niepewności przez zastosowanie techniki uogólnionego chaosu wielomianowego (gPC). Funkcje te mogą być użyte do estymacji wartości parametrów przy wykorzystaniu różnych metod statystycznych. W pracy zastosowano metodę maksymalnego estymatora a posteriori (MAP). Estymator MAP maksymalizuje funkcję rozkładu P(β ׀z), gdzie β jest wektorem funkcji gęstości prawdopodobieństwa parametrów, a z jest wielkością mierzalną, otrzymaną z porównania wyjść czujników. Metodą alternatywną jest zastosowanie filtru adaptacyjnego, którego przykładem jest filtr Kalmana. Metoda ta, w połączeniu z techniką uogólnionego chaosu wielomianowego (gPC), umożliwia, w każdym kroku adaptacji, uaktualnianie funkcji gęstości prawdopodobieństwa (PDF) parametrów systemu. Działanie filtru powoduje, że mediany tych funkcji zmieniają się dążąc do rzeczywistych wartości poszukiwanych parametrów.
Źródło:
Archive of Mechanical Engineering; 2013, LX, 1; 7-21
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Weibull failure model to the study of the hierarchical Bayesian reliability
Model uszkodzeń aproksymowa ny rozkładem Weibulla do badania niezaw odności reprezentowanej za pomocą hierarchicznej sieci Bayesowskiej
Autorzy:
Zhu, T.
Yan, Z.
Peng, X.
Powiązania:
https://bibliotekanauki.pl/articles/300717.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
hierarchical Bayesian model
progressive type-II censoring
hyper parameter
Monte Carlo simulation
parameter estimation
hierarchiczny model bayesowski
ucinanie progresywne typu II
hiperparametr
symulacja Monte Carlo
estymacja parametrów
Opis:
This paper describes the unknown parameter and reliability function of the Weibull distribution based on hierarchical Bayesian model for the progressively Type-II censored data. The scale parameter of the Weibull distribution is considered with a gamma prior under the shape parameter is known. Furthermore, the scale parameter of the gamma prior is assumed to be three different known hyper prior. Under these assumptions, the Weibull parameter and reliability function estimators are derived based on the squared error loss (SEL) function, which can be easily extended to other loss functions situation. The result from hierarchical Bayesian method is used to compare with Bayes and maximum likelihood estimate (MLE) methods. The simulation shown that the results from Bayes is the best, followed by hierarchical Bayesian method, and then MLE in terms of root mean square error (RMSE). Finally, one real dataset has been analyzed for illustrative purposes.
W prezentowanej pracy opisano metodę estymacji nieznanego parametru oraz funkcji niezawodności rozkładu Weibulla w oparciu o hierarchiczny model Bayesa dla danych uciętych (cenzurowanych) progresywnie typu II. Rozważano parametr skali rozkładu Weibulla o rozkładzie prawdopodobieństwa apriorycznego gamma w sytuacji, gdzie wartość parametru kształtu była znana. Ponadto, przyjęto, że (hiper)parametr skali rozkładu apriorycznego gamma może mieć trzy różne, znane hiper-rozkłady aprioryczne (ang. hyper priors). Przy tych założeniach, estymatory parametru i funkcji niezawodności rozkładu Weibulla wyprowadzono na podstawie kwadratowej funkcji straty (ang. squared error loss, SEL), którą można łatwo rozszerzyć na inne funkcje straty. Wyniki otrzymane z wykorzystaniem hierarchicznej metody Bayesowskiej porównano z wynikami klasycznej estymacji Bayesowskiej oraz estymacji metodą największego prawdopodobieństwa (ang. maximum likelihood estimate, MLE). Symulacja wykazała, że najlepsze wyniki, jeśli chodzi o średnią kwadratową błędów (ang. root mean squared error, RMSE), daje metoda Bayesa, a w dalszej kolejności hierarchiczna metoda Bayesa oraz MLE. W końcowej części pracy rozważane problemy zilustrowano analizując zbiór danych rzeczywistych.
Źródło:
Eksploatacja i Niezawodność; 2016, 18, 4; 501-506
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies