Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "metoda dekompozycji" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Analysis of effectiveness and computational complexity of trend removal methods
Analiza skuteczności i złożoności obliczeniowej metod usuwania składowej trendu z danych pomiarowych
Autorzy:
Lentka, Ł.
Smulko, J.
Powiązania:
https://bibliotekanauki.pl/articles/269175.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
trend removal
high-pass filter
empirical mode decomposition
EMD
usuwanie trendu
filtry górnoprzepustowe
empiryczna metoda dekompozycji
Opis:
The paper presents a method of processing measurement data due to remove slowly varying component of the trend occurring in the recorded waveforms. Comparison of computational complexity and trend removal efficiency between some commonly used methods is presented. The impact of these procedures on probability distribution and power spectral density is shown. Effectiveness and computational complexity of these methods depend essentially on nature of the removed trend. This paper describes several procedures: Moving Average Removal (MAR), fitting a polynomial of degree appropriate to the analyzed data, Empirical Mode Decomposition (EMD).
W pracy przedstawiono sposób przetwarzania danych pomiarowych w celu usunięcia wolnozmiennej składowej trendu występującego w rejestrowanych przebiegach. Porównano kilka często stosowanych w tym celu metod pod względem ich złożoności obliczeniowej oraz skuteczności w usuwaniu trendu. Pokazano wpływ tych procedur na rozkład prawdopodobieństwa wartości chwilowych oraz przebieg gęstości widmowej mocy. W ogólności operację usuwania trendu możemy traktować jako filtrację górnoprzepustową danych pomiarowych. W celu usunięcia trendu można użyć filtru górnoprzepustowego (analogowego lub cyfrowego) już na etapie akwizycji danych pomiarowych. Jednakże często mamy do czynienia z danymi, w których składowa trendu jest potrzebna do przeprowadzania innych analiz i nie może być usunięta na etapie rejestracji danych pomiarowych. Ponadto, może mieć charakter niestacjonarny i metody filtracji górnoprzepustowej nie będą skuteczne. W takich przypadkach należy rozważyć inne, często bardziej zaawansowane metody. Skuteczność i złożoność obliczeniowa takich metod zależy istotnie od charakteru usuwanego trendu. W pracy opisano procedurę usuwania średniej kroczącej (ang. Moving Average Removal – MAR), metody o niskiej złożoności obliczeniowej, ale dającej zadowalające rezultaty w dużej liczbie potencjalnych zastosowań. Rozważono usuwanie trendu przez dopasowanie wielomianem odpowiedniego stopnia do analizowanych danych pomiarowy. Procedura ta może być powtarzana kilkukrotnie, nawet ze zwiększaniem stopnia wielomianu przy każdym z kroków, aż do uzyskania przebiegu, w którym usunięto składową trendu. Część pracy poświęcono prezentacji bardziej złożonych obliczeniowo metod, które zostały rozwinięte dopiero w ostatnich latach i wymagają znacznie bardziej intensywnych obliczeń.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 51; 111-114
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
EMD-based time-frequency analysis methods of non-stationary audio signals
Autorzy:
Lewandowski, Marcin
Grodzicka, Salomea
Powiązania:
https://bibliotekanauki.pl/articles/2202413.pdf
Data publikacji:
2022
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
empirical mode decomposition
non-stationary audio data
time-frequency analysis
empiryczna metoda dekompozycji
niestacjonarne dane dźwiękowe
analiza czasowo-częstotliwościowa
Opis:
To ensure that any time series data is appropriately interpreted, it should be analyzed with proper signal processing tools. The most common analysis methods are kernel-based transforms, which use base functions and their modifications to represent time series data. This work discusses an analysis of audio data and two of those transforms - the Fourier transform and the wavelet transform based on a priori assumptions about the signal's linearity and stationarity. In audio engineering, these assumptions are invalid because the statistical parameters of most audio signals change with time and cannot be treated as an output of the LTI system. That is why recent approaches involve decomposition of a signal into different modes in a data-dependent and adaptive way, which may provide advantages over kernel-based transforms. Examples of such methods include empirical mode decomposition (EMD), ensemble EMD (EEMD), variational mode decomposition (VMD), or singular spectrum analysis (SSA). Simulations were performed with speech signal for kernel-based and data-dependent decomposition methods, which revealed that evaluated decomposition methods are promising approaches to analyzing non-stationary audio data.
Źródło:
Vibrations in Physical Systems; 2022, 33, 2; art. no. 2022215
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies