Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "corrosion behavior" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Microstructure and Corrosion Behaviors of Biodegradable Mg-1Zn-1Zr-xSn Alloys Prepared by Powder-In-Tube Rolling
Autorzy:
Zakiyuddin, A.
Lee, K.
Powiązania:
https://bibliotekanauki.pl/articles/356604.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biodegradable Mg alloy
powder-in-tube rolling
corrosion behavior
Opis:
The objective of the present study was to investigate the effects of Sn addition on the mechanical and corrosion properties of Mg-1Zn-1Zr-xSn (x = 1, 2, 3, 4, 5 wt.%) alloys prepared by powder-in-tube rolling (PTR) method. The PTR-treated Mg alloys reached 98.3% of theoretical density. The hardness of the alloy increased with Sn addition. Two main intermetallic phases, Mg2Sn and Zn2Zr3, were formed in the alloys. The Mg2Sn intermetallic particles were observed along the grain boundaries, while the Zn2Zr3 particles were distributed in the Mg matrix. The addition of 1 wt. % Sn caused the corrosion potential to shift toward a more positive value, and the resulting alloy exhibited low corrosion current density.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 3; 1467-1471
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of Yttrium (Y) Substitution by Cerium (Ce) on Microstructure and Corrosion Behavior of Near-Equiatomic Alniy Medium-Entropy Amorphous Alloy Ribbons
Autorzy:
Zhang, Shuyan
Zhang, Zhibin
Wang, Xin
Gao, Yangyang
Liang, Xiubing
Powiązania:
https://bibliotekanauki.pl/articles/2106589.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
medium-entropy amorphous alloys
corrosion behavior
thermal stability analysis
microstructure
cerium content
Opis:
Through partially replacing Y element, Ce was added into near-equiatomic AlNiY medium-entropy amorphous alloy (denoted as MEAA) ribbons by the melt spinning process in this study. The differences of microstructure, thermal stability, hardness and corrosion resistance of Al33.3Ni33.3Y33.4-xCex(x = 0, 2, 5, 8, 13) alloy ribbons were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), differential scanning calorimeter (DSC) and Vickers-type hardness tester. The anti-corrosion performance in 3.5 wt.% NaCl solution of alloy ribbons was investigated elaborately through the general potentiodynamic polarization curves (Tafel) and electrochemical impedance spectroscopy (EIS). Results suggested that all ribbon samples could remain amorphous structure and the hardness are all above 510 HV0.1. With the increase of Ce content, the thermal stability begins to be gradually lower. However, according to the analysis of crystallization kinetics, all types of MEAA ribbons presents the relatively prominent thermal stability compared with traditional Al-based amorphous alloys. The corrosion current density raises firstly, then shows a decreasing trend, and has a slight increase at last. Therefore, appropriate content of Ce element can improve the corrosion protection performance of alloy ribbons and the 5 at.% Ce MEAA ribbons exhibited the excellent corrosion resistance in this study.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 637--643
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Effect of BN or SiC Addition on PEO Properties of Coatings Formed on AZ91 Magnesium Alloy
Autorzy:
Pelczar, D.
Długosz, Piotr
Darłak, P.
Szewczyk-Nykiel, Aneta
Nykiel, Marek
Hebda, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2048800.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
composite oxide film
abrasive wear resistance
corrosion behavior
scratch resistance
protective coatings
Opis:
Currently, due to the economic and ecological aspects, light alloys are increasingly important construction material, in particular in the transport industry. One of the popular foundry magnesium alloys is the alloy AZ91, which among others due to mechanical properties and technological features, is used, for example, for light structural parts. The paper presents the results of research on modification of the AZ91 alloy surface layer in the plasma electrolytic oxidation process. The change of usable properties of the produced coatings was obtained by introducing additions of silicon carbide or boron nitride. The thickness and hardness of the protective layers produced, resistance to scratches and corrosion resistance were determined. Moreover, the friction coefficient of the coating-steel pair was investigated. The quality of the connections made between the coating and the substrate, i.e. the magnesium alloy, was also evaluated. The results obtained for coatings with silicon carbide or boron nitride additives were always compared to the results obtained for unmodified samples. On the basis of the obtained results, it was shown that the introduction of boron nitride additive to the AZ91 alloy coating produced in the plasma electrolytic oxidation process significantly improves the resistance to: (i) corrosion and (ii) abrasive wear of the coating.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 1; 147-154
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Protection properties of conversion coatings based on nitrates for resorbable Mg alloy
Autorzy:
Cesarz-Andraczke, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2090712.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
magnesium alloys
protection coatings
hydrogen evolution
corrosion behavior
stopy magnezu
powłoki ochronne
wydzielanie wodoru
zachowanie korozyjne
Opis:
In this work, conversion coatings based on nitrates Ca(NO 3) 2 and Zn(NO 3) 2 were produced on the surface of MgZn49Ca4 to protect against corrosion. The main aim of this study was to prepare dense and uniform coatings using a conversion method (based on nitrates Ca(NO 3) 2 and Zn(NO 3) 2) for resorbable Mg alloys. The scientific goal of the work was to determine the pathway and main degradation mechanisms of samples with nitrate-based coatings as compared with an uncoated substrate. Determining the effect of the coatings produced on the Mg alloy was required to assess the protective properties of Mg alloy-coating systems. For this purpose, the morphology and chemical composition of coated samples, post corrosion tests and structural tests of the substrate were performed (optical microscopy, SEM/EDS). Immersion and electrochemical tests of samples were also carried out in Ringer’s solution at 37°C. The results of immersion and electrochemical tests indicated lower corrosion resistance of the substrate as compared with coated samples. The hydrogen evolution rate of the substrate increased with the immersion time. For coated samples, the hydrogen evolution rate was more stable. The ZnN coating (based on Zn(NO 3) 2) provides better corrosion protection because the corrosion product layer was uniform, while the sample with a CaN coating (based on Ca(NO 3) 2) displayed clusters of corrosion products. It was found that pitting corrosion on the substrate led to the complete disintegration and non-uniform corrosion of the coated samples, especially the CaN sample, due to the unevenly-distributed products on its surface.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; e136045, 1--7
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Protection properties of conversion coatings based on nitrates for resorbable Mg alloy
Autorzy:
Cesarz-Andraczke, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/2173570.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
magnesium alloys
protection coatings
hydrogen evolution
corrosion behavior
stopy magnezu
powłoki ochronne
wydzielanie wodoru
zachowanie korozyjne
Opis:
In this work, conversion coatings based on nitrates Ca(NO 3) 2 and Zn(NO 3) 2 were produced on the surface of MgZn49Ca4 to protect against corrosion. The main aim of this study was to prepare dense and uniform coatings using a conversion method (based on nitrates Ca(NO 3) 2 and Zn(NO 3) 2) for resorbable Mg alloys. The scientific goal of the work was to determine the pathway and main degradation mechanisms of samples with nitrate-based coatings as compared with an uncoated substrate. Determining the effect of the coatings produced on the Mg alloy was required to assess the protective properties of Mg alloy-coating systems. For this purpose, the morphology and chemical composition of coated samples, post corrosion tests and structural tests of the substrate were performed (optical microscopy, SEM/EDS). Immersion and electrochemical tests of samples were also carried out in Ringer’s solution at 37°C. The results of immersion and electrochemical tests indicated lower corrosion resistance of the substrate as compared with coated samples. The hydrogen evolution rate of the substrate increased with the immersion time. For coated samples, the hydrogen evolution rate was more stable. The ZnN coating (based on Zn(NO 3) 2) provides better corrosion protection because the corrosion product layer was uniform, while the sample with a CaN coating (based on Ca(NO 3) 2) displayed clusters of corrosion products. It was found that pitting corrosion on the substrate led to the complete disintegration and non-uniform corrosion of the coated samples, especially the CaN sample, due to the unevenly-distributed products on its surface.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; art. no. e136045
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies