Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "uczenie głębokie." wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Zastosowanie sieci konwolucyjnej głębokiego uczenia w detekcji pojazdów
Use of deep learning convolutional network in vehicle detectionmears
Autorzy:
Oszutowska-Mazurek, D. A.
Mazurek, P.
Powiązania:
https://bibliotekanauki.pl/articles/136004.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
sieć konwolucyjna
uczenie głębokie
detekcja pojazdów
przetwarzanie obrazów
image processing
deep learning
convolutional neural network
vehicle detection
Opis:
Wstęp i cel: Detekcja pojazdów na znaczenie w bezpieczeństwie ruchu drogowego oraz programowaniu pojazdów autonomicznych. Celem pracy jest detekcja pojazdów odróżniająca obrazy pojazdów od innych obrazów nie zawierających pojazdów. Materiał i metody: W pracy wykorzystano bazę pojazdów zawierającą obrazy ekstrahowane z sekwencji wideo, które przetwarzano za pomocą sieci konwolucyjnej głębokiego uczenia. Wyniki: Uzyskana sieć konwolucyjna charakteryzuje się bardzo dobrymi parametrami, krzywa PSNR względem kroku uczenia rośnie co oznacza, że zachodzi proces odszumiania kerneli w całym procesie uczenia. Wniosek: Proponowana metoda może być wykorzystana w programowaniu pojazdów autonomicznych oraz implementacji w Inteligentnych Systemach Transportowych ITS do detekcji pojazdów; bazuje na uczeniu a nie na projektowaniu algorytmu syntetycznego, dzięki temu jest potrzebny relatywnie krótki czas opracowania klasyfikatora.
Introduction and aim: Vehicle detection plays essential role in road safety and automatic vehicle programming. The aim of study is vehicle detection distinguishing car and non-car images Material and methods: Vehicle database images extracted from video sequences were processed by deep learning convolutional network. Results: Obtained convolutional network is characterised by very good parameters, PSNR curve indicates denoising of kernels in learning process. Conclusion: Proposed method is potentially useful in autonomic vehicles programming and Intelligent Transportation Systems (ITS) for vehicles detection. The solution is based on learning, not on synthetic algorithm design, thanks to this, a relatively short time of classifier development is needed.
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 47-56
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theory I: Deep networks and the curse of dimensionality
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/200623.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep network
shallow network
convolutional neural network
function approximation
deep learning
sieci neuronowe
aproksymacja funkcji
uczenie głębokie
Opis:
We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 761-773
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns
Autorzy:
Bernardo, Lucas Salvador
Damaševičius, Robertas
de Albuquerque, Victor Hugo C.
Maskeliūnas, Rytis
Powiązania:
https://bibliotekanauki.pl/articles/2055162.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Parkinson’s disease
spirography
convolutional neural network
deep learning
choroba Parkinsona
spirografia
sieć neuronowa konwolucyjna
uczenie głębokie
Opis:
Parkinson’s disease (PD) is the second most common neurological disorder in the world. Nowadays, it is estimated that it affects from 2% to 3% of the global population over 65 years old. In clinical environments, a spiral drawing task is performed to help to obtain the disease’s diagnosis. The spiral trajectory differs between people with PD and healthy ones. This paper aims to analyze differences between handmade drawings of PD patients and healthy subjects by applying the SqueezeNet convolutional neural network (CNN) model as a feature extractor, and a support vector machine (SVM) as a classifier. The dataset used for training and testing consists of 514 handwritten draws of Archimedes’ spiral images derived from heterogeneous sources (digital and paper-based), from which 296 correspond to PD patients and 218 to healthy subjects. To extract features using the proposed CNN, a model is trained and 20% of its data is used for testing. Feature extraction results in 512 features, which are used for SVM training and testing, while the performance is compared with that of other machine learning classifiers such as a Gaussian naive Bayes (GNB) classifier (82.61%) and a random forest (RF) (87.38%). The proposed method displays an accuracy of 91.26%, which represents an improvement when compared to pure CNN-based models such as SqueezeNet (85.29%), VGG11 (87.25%), and ResNet (89.22%).
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 549--561
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimating the distance to an object from grayscale stereo images using deep learning
Autorzy:
Kulawik, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/2202043.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
estimating distance
stereo vision
convolutional neural network
deep learning
szacowanie odległości
widzenie stereoskopowe
konwolucyjne sieci neuronowe
uczenie głębokie
Opis:
This article presents an innovative proposal for estimating the distance between an autonomous vehicle and an object in front of it. Such information can be used, for example, to support the process of controlling an autonomous vehicle. The primary source of information in research is monochrome stereo images. The images were made in compliance with the laws of the canonical order. The developed convolutional neural network model was used for the estimation. A proprietary dataset was developed for the experiments. The analysis was based on the phenomenon of disparity in stereo images. As a result of the research, a correctly trained model of the CNN network was obtained in six variants. High accuracy of distance estimation was achieved. This publication describes an original proposal for a hybrid blend of digital image analysis, stereo-vision, and deep learning for engineering applications.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 4; 60--72
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A genetic algorithm based optimized convolutional neural network for face recognition
Autorzy:
Karlupia, Namrata
Mahajan, Palak
Abrol, Pawanesh
Lehana, Parveen K.
Powiązania:
https://bibliotekanauki.pl/articles/2201023.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
convolutional neural network
genetic algorithm
deep learning
evolutionary technique
sieć neuronowa konwolucyjna
algorytm genetyczny
uczenie głębokie
technika ewolucyjna
Opis:
Face recognition (FR) is one of the most active research areas in the field of computer vision. Convolutional neural networks (CNNs) have been extensively used in this field due to their good efficiency. Thus, it is important to find the best CNN parameters for its best performance. Hyperparameter optimization is one of the various techniques for increasing the performance of CNN models. Since manual tuning of hyperparameters is a tedious and time-consuming task, population based metaheuristic techniques can be used for the automatic hyperparameter optimization of CNNs. Automatic tuning of parameters reduces manual efforts and improves the efficiency of the CNN model. In the proposed work, genetic algorithm (GA) based hyperparameter optimization of CNNs is applied for face recognition. GAs are used for the optimization of various hyperparameters like filter size as well as the number of filters and of hidden layers. For analysis, a benchmark dataset for FR with ninety subjects is used. The experimental results indicate that the proposed GA-CNN model generates an improved model accuracy in comparison with existing CNN models. In each iteration, the GA minimizes the objective function by selecting the best combination set of CNN hyperparameters. An improved accuracy of 94.5% is obtained for FR.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 21--31
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combining Spectral Analysis with Artificial Intelligence in Heart Sound Study
Autorzy:
Kucharski, Dariusz
Kajor, Marcin
Grochala, Dominik
Iwaniec, Marek
Iwaniec, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/102508.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
deep learning
heart sound classification
convolutional neural network
machine learning
signal processing
uczenie głębokie
klasyfikacja dźwięku serca
splotowa sieć neuronowa
uczenie maszynowe
przetwarzanie sygnałów
Opis:
The auscultation technique has been widely used in medicine as a screening examination for ages. Nowadays, advanced electronics and effective computational methods aim to support the healthcare sector by providing dedicated solutions which help physicians and support diagnostic process. In this paper, we propose a machine learning approach for the analysis of heart sounds. We used the spectral analysis of acoustic signal to calculate feature vectors and tested a set of machine learning approaches to provide the most effective detection of cardiac disorders. Finally, we achieved 91% of sensitivity and 99% of positive predictivity for a designed algorithm based on convolutional neural network.
Źródło:
Advances in Science and Technology. Research Journal; 2019, 13, 2; 112-118
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid approach of a deep learning technique for real-time ECG beat detection
Autorzy:
Patro, Kiran Kumar
Prakash, Allam Jaya
Samantray, Saunak
Pławiak, Joanna
Tadeusiewicz, Ryszard
Pławiak, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2172118.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
cardiac abnormalities
CAD
convolutional neural network
CNN
deep learning
ECG
electrocardiogram
supra ventricular ectopic beats
SVE
nieprawidłowości kardiologiczne
sieć neuronowa konwolucyjna
uczenie głębokie
EKG
elektrokardiogram
Opis:
This paper presents a new customized hybrid approach for early detection of cardiac abnormalities using an electrocardiogram (ECG). The ECG is a bio-electrical signal that helps monitor the heart’s electrical activity. It can provide health information about the normal and abnormal physiology of the heart. Early diagnosis of cardiac abnormalities is critical for cardiac patients to avoid stroke or sudden cardiac death. The main aim of this paper is to detect crucial beats that can damage the functioning of the heart. Initially, a modified Pan–Tompkins algorithm identifies the characteristic points, followed by heartbeat segmentation. Subsequently, a different hybrid deep convolutional neural network (CNN) is proposed to experiment on standard and real-time long-term ECG databases. This work successfully classifies several cardiac beat abnormalities such as supra-ventricular ectopic beats (SVE), ventricular beats (VE), intra-ventricular conduction disturbances beats (IVCD), and normal beats (N). The obtained classification results show a better accuracy of 99.28% with an F1 score of 99.24% with the MIT–BIH database and a descent accuracy of 99.12% with the real-time acquired database.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 3; 455--465
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Constant Q-transform-based deep learning architecture for detection of obstructive sleep apnea
Autorzy:
Kandukuri, Usha Rani
Prakash, Allam Jaya
Patro, Kiran Kumar
Neelapu, Bala Chakravarthy
Tadeusiewicz, Ryszard
Pławiak, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/24200694.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sleep apnea
convolutional neural network
constant Q-transform
deep learning
single lead ECG signal
non apnea
obstructive sleep apnea
bezdech senny
sieć neuronowa konwolucyjna
uczenie głębokie
sygnał EKG
obturacyjny bezdech senny
Opis:
Obstructive sleep apnea (OSA) is a long-term sleep disorder that causes temporary disruption in breathing while sleeping. Polysomnography (PSG) is the technique for monitoring different signals during the patient’s sleep cycle, including electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG), and oxygen saturation (SpO2). Due to the high cost and inconvenience of polysomnography, the usefulness of ECG signals in detecting OSA is explored in this work, which proposes a two-dimensional convolutional neural network (2D-CNN) model for detecting OSA using ECG signals. A publicly available apnea ECG database from PhysioNet is used for experimentation. Further, a constant Q-transform (CQT) is applied for segmentation, filtering, and conversion of ECG beats into images. The proposed CNN model demonstrates an average accuracy, sensitivity and specificity of 91.34%, 90.68% and 90.70%, respectively. The findings obtained using the proposed approach are comparable to those of many other existing methods for automatic detection of OSA.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 3; 493--506
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arabic and American Sign Languages Alphabet Recognition by Convolutional Neural Network
Autorzy:
Alshomrani, Shroog
Aljoudi, Lina
Arif, Muhammad
Powiązania:
https://bibliotekanauki.pl/articles/2023675.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
convolutional neural network
deep learning
American sign language
Arabic sign language
sieć neuronowa
głębokie uczenie
amerykański język migowy
arabski język migowy
Opis:
Hearing loss is a common disability that occurs in many people worldwide. Hearing loss can be mild to complete deafness. Sign language is used to communicate with the deaf community. Sign language comprises hand gestures and facial expressions. However, people find it challenging to communicate in sign language as not all know sign language. Every country has developed its sign language like spoken languages, and there is no standard syntax and grammatical structure. The main objective of this research is to facilitate the communication between deaf people and the community around them. Since sign language contains gestures for words, sentences, and letters, this research implemented a system to automatically recognize the gestures and signs using imaging devices like cameras. Two types of sign languages are considered, namely, American sign language and Arabic sign language. We have used the convolutional neural network (CNN) to classify the images into signs. Different settings of CNN are tried for Arabic and American sign datasets. CNN-2 consisting of two hidden layers produced the best results (accuracy of 96.4%) for the Arabic sign language dataset. CNN-3, composed of three hidden layers, achieved an accuracy of 99.6% for the American sign dataset.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 4; 136-148
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies