Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "biomass" wg kryterium: Wszystkie pola


Tytuł:
Biomass heat centres
Autorzy:
Urbonienė, Virginija
Powiązania:
https://bibliotekanauki.pl/chapters/4177695.pdf
Data publikacji:
2019
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
biomass
biogas
pyrolysis
bioreactor
plants
Opis:
The classification of solid biofuel depends upon the determination of the fuel origin and it is divided into (LST EN 14961-1): wood biomass, herbaceous biomass, fruit biomass, biomass mixtures. Biomass burning is the conversion of accumulated energy. Most part of the energy produced from biomass causes heat, which is gained by burning wood, firewood, wood pellets, wood chips, wood sawdust, etc.
Źródło:
Buildings 2020+. Energy sources; 181-212
9788365596727
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mikroglony : źródło biomasy
Microalgae : a source of biomass
Autorzy:
Krzemińska, I.
Kwietniewska, E.
Tys, J.
Palcowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/312207.pdf
Data publikacji:
2012
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
mikroglony
biomasa
biogaz
microalgae
biomass
biogas
Opis:
Obecnie podkreślany jest znaczący potencjał biomasy jako źródła energii odnawialnej. Jednym z bardzo wydajnych źródeł biomasy jest biomasa mikroglonów. Mikroglony charakteryzują się wysoką efektywność fotosyntetyczną, co przekłada się na szybką produkcję biomasy. Do hodowli mikroglonów można wykorzystywać ścieki oraz gazy spalinowe. Mikroglony postrzegane są jako potencjalni producenci ciekłych i gazowych biopaliw. Wykorzystanie biomasy mikroglonów do produkcji, nie emitujących zanieczyszczeń biopaliw stanowi intensywnie rozwijającą się dziedzinę nauki.
Currently, the considerable potential of biomass as a source of renewable energy has been increasingly emphasized. Microalgae are characterized by high photosynthetic efficiency, which is reflected in rapid production of biomass. Sewage and exhausts can be used in microalgal culture. Microalgae are regarded as potential producers of liquid and gaseous biofuels. The use of microalgal biomass for production of modern, non-polluting biofuels has become an intensively developing scientific discipline.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2012, 13, 10; 229-231
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Economic efficiency of the technologies of agricultural biomass use for energy purposes
Autorzy:
Yankovska, K.
Powiązania:
https://bibliotekanauki.pl/articles/411291.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
bioenergetics
biotechnologies
economic effect
prime cost
biogas
agricultural biomass
Opis:
The research presents analysis of the technologies of conversion of bioenergy agricultural raw materials. Purchase of bioenergy equipment is impossible without investments into bioenergetics. Thus, there is a necessity to develop an investment project. The article defines main indicators for investment project assessment, i.e. net present value, internal rate of return, modification internal rate of return, discounted payback period, investment profitability index, and gives classification of investment projects. The works proves that, considering substantial differences of different kinds of energy products and ways of their obtaining, analysis of biomass conversion technologies should be made separately for each kind of it. It is confirmed that biogas is one of the most prospective energy resources, supplying improvement of ecological conditions of production processes. The author of the article argues reasonability to apply technologies of briquetting and pelleting of dry biomass. The research studies methodological approaches to determination of prime cost of a unit of energy of the main kinds of biomass conversion. It is proved that, comparing to traditional energy products, such as natural gas, stove fuel, petrol and diesel fuel, prime cost of the energy products, obtained by conversion of agricultural biomass, is substantially lower, proving economic efficiency and reasonability of the technologies application.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2017, 6, 3; 81-87
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza możliwości pozyskania energii z biomasy w Polsce
Analysis of the possibility of obtaining energy from biomass in Poland
Autorzy:
Piaskowska-Silarska, M.
Powiązania:
https://bibliotekanauki.pl/articles/282763.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
biomasa stała
biopaliwa
biogaz
solid biomass
biofuels
biogas
Opis:
W opracowaniach Głównego Urzędu Statystycznego znajduje się podział biomasy na biomasę stałą, biopaliwa i biogaz. W przedstawionym referacie pokazano pozyskanie biomasy stałej w Polsce w latach 2002–2011. Wokresie tym nastąpił około 70-procentowy wzrost udziału biomasy w produkcji energii, szczególnie intensywny od roku 2008. Przedstawiono tu również pozyskanie gazu składowiskowego i biogazu z oczyszczalni ścieków w Polsce w latach 2002–2011. W 2011 r. udział całkowitego biogazu wzrósł ponad czterokrotnie w odniesieniu do roku bazowego 2002. Trzecią rozpatrywaną grupę stanowią biopaliwa. W 2011 r. pozyskanie bioetanolu było tylko o 14,5% wyższe niż w 2002 r., podczas gdy udział biodiesla w bilansie nośników energii w tym samym czasie wzrósł czterokrotnie. Większe wykorzystanie biomasy do celów energetycznych wynika przede wszystkim z jej niskiej ceny. Na składowiskach odpadów powstaje z kolei biogaz, który zgodnie z zaleceniami Unii Europejskiej powinien być ujmowany i najlepiej wykorzystywany energetycznie. Szacuje się, że w zależności od jego ilości i wartości opałowej, sposobu zagospodarowania i zastosowanej technologii a także cen rynkowych pozyskanego ciepła i energii elektrycznej, czas zwrotu poniesionych nakładów na instalację odgazowania wynosi od 2 do 10 lat. Przedstawiony w referacie wzrost wykorzystania biopaliw wynika natomiast z faktu, że stanowią one coraz wiêkszy dodatek do paliw sprzedawanych na polskim rynku (7,1% od 2013 r.). Na niektórych stacjach jest już możliwość zakupu czystego biodiesla, którego cena jest niższa w porównaniu z ceną oleju napędowego.
Publications of the Central Statistical Office categorize biomass into solid biomass, bio-fuel, and biogas. The present article summarizes the acquisition of solid biomass in Poland in the years 2002–2011. During this period, there was a 70% increase in the share of biomass in energy production, particularly since 2008. The article also presents the use of landfill gas and biogas from wastewater treatment plants in Poland for the years 2002–2011. In 2011, the share of the total biogas has more than quadrupled compared to the base year of 2002. The third group considered consists of bio-fuels. In 2011, the consumption of bioethanol was only 14.5% higher than in 2002, while the share of biodiesel in the energy balance during the same period increased fourfold. The increased use of biomass for energy purposes is primarily due to its low price. Though presently commonplace, environmentally harmful coal is increasingly being replaced by straw, which is approximately four times cheaper to use. In landfills where biogas is formed, in accordance with the recommendations of the European Union this energy source should be recognized and used energetically. It is estimated that – based on the quantity and calorific value, method of management, available technology, as well as the market prices of heat and electricity – the time of return on investment for the installation of degassing systems is from 2 to 10 years. Increased use of bio-fuels is anticipated due to the fact that they have already seen a growing presence as a fuel additive sold on the Polish market (up 7.1% from 2013). At some fueling stations, it is already possible to buy pure biodiesel, the price of which is lower than that of conventional diesel.
Źródło:
Polityka Energetyczna; 2014, 17, 4; 239-247
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methanogenic potential of biomass from roadside verges preserved with various additives
Autorzy:
Purwin, C.
Pysera, B.
Fijałkowska, B.
Lipiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/363264.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
biomass
biogas
methane
road barrens
silage
biomasa
biogaz
metan
kiszonka
droga
pas zieleni
Opis:
The aim of the present research was to evaluate the chemical composition and storage capacities, as well as the efficiency and composition of biogas from biomass collected from roadside verges. The biomass was collected in July and October and then preserved in microsilos (10L) with and without formic acid, bacterial inoculant, bacterial-enzymatic preparation, enzymatic preparation. After 180 days of storage, biomass samples were analyzed for chemical composition, organic dry matter (ODM) losses and biogas and methane yield (Oxi Top Control). Biomass from the summer period had a higher (p<0.01) content of dry matter, neutral detergent fiber, hemicellulose and cellulose and a lower (p<0.01) content of ether extract and acid detergent fiber. Loss of organic matter during preservation and biomass storage without additives was higher in the material from the summer period. However, when compared with the autumn period, summer biomass stored without additives had a higher methane production potential (288 vs. 215 LN CH4ˑkg-1 ODM). The additive which most effectively reduced the loss of organic matter was formic acid. However, the most beneficial for biogas efficiency and methane were the bacterial enzymatic preparation (summer harvest) and addition of formic acid (autumn harvest). Methane efficiency equaled 314 and 299 LNˑkg-1 ODM, and its concentration in biogas amounted to 60.4 and 59.4% for summer and autumn biomass, respectively. The results indicated the possibility of storing and using biomass from roadside verges as a source of biogas. The primary aim of using added preservatives was to reduce the loss of organic matter during biomass storage as well as to improve the efficiency of methanogenesis.
Źródło:
Environmental Biotechnology; 2014, 10, 1; 18-22
1734-4964
Pojawia się w:
Environmental Biotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biomass energy potential : green energy for the university of Warmia and Mazury in Olsztyn
Autorzy:
Górecki, R.
Piętak, A.
Meus, M.
Kozłowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/241599.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biomass
biogas
bio-gasworks
cogeneration
renewable energy sources
electrical energy
heat energy
gasification
Opis:
The combined production of electrical and heat energy is one of the preferred, by national policy, activities associated with energy production from renewable sources. The simultaneous generation of heat and electrical or mechanical energy during the same technological process is called cogeneration or combined heat and power, CHP. The presented methodological approach includes an analysis of the data recorded in the research stations and agricultural production stations owned and managed by the University of Warmia and Mazury (UWM) in Olsztyn, performed in order to determine the energy potential of biomass and other renewable energy sources (RES). Depending on the substrates available for UWM in Olsztyn, it is proposed to take a varied approach towards the use of RES by means of biotechnological and thermal biomass conversion. The first method is based on the production of biogas from biomass with the subsequent use of the generated biogas in the process of cogeneration. In the second method, heat energy generated by gasification in a syngas generator will be used for transformation with a Stirling’s engine into mechanical energy and finally into electrical (30%) and heat (60%) energy. The concept of a “Green University” is the result of the performed analyses.
Źródło:
Journal of KONES; 2013, 20, 4; 99-106
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konwersja biomasy odpadów biodegradowalnych metodą fermentacji metanowej
Conversion of biomass and biodegradable wastes by methane fermantation
Autorzy:
Kacprzak, A.
Krzystek, L.
Ledakowicz, S.
Powiązania:
https://bibliotekanauki.pl/articles/2070372.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
biomasa
kofermentacja metanowa
biogaz
odpady biodegradowalne
biomass
co-fermentation
biogas
biodegradable wastes
Opis:
W pracy przedstawiono badania mające na celu optymalizację składu surowców do wysokowydajnej produkcji wysokometanowego biogazu. Badania prowadzono w bioreaktorze z mieszaniem o pojemności 25 dm3 metodą quasi-ciągłą. Uzyskano większą szybkość produkcji biogazu w przypadku współ-fermentacji wysłodków buraczanych niż kiszonki kukurydzy - 2,2 dm3/dm3/d, natomiast zawartość metanu w biogazie w procesie współfermentacji kiszonki kukurydzy była o 10% większa.
The paper presents results of optimization of substrate composition for methane-rich biogas production. The experiments were performed in a 25 dm3 bioreactor operated mesophically in quasi-continuous mode. It has been stated that the gas production rate in a case of sugar beet pulp was higher than in a case of corn silage and equal to 2.2 dm3/dm3/d, whereas the methane content in biogas was about 10% higher in a case of corn silage.
Źródło:
Inżynieria i Aparatura Chemiczna; 2009, 3; 57-58
0368-0827
Pojawia się w:
Inżynieria i Aparatura Chemiczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The study of effectiveness of disintegration of biomass intended to methane fermentation process
Badanie efektywności dezintegracji biomasy przeznaczonej do procesu fermentacji metanowej
Autorzy:
Owczuk, M.
Matuszewska, A.
Filip, A.
Prachnio, P.
Powiązania:
https://bibliotekanauki.pl/articles/1364214.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz. Przemysłowy Instytut Motoryzacji
Tematy:
disintegration
biomass
biogas
dezintegracja
biomasa
biogaz
Opis:
Production of biogas in the methane fermentation process is complicated and requires optimisation, among others, with better use of biomass by bacteria. One of the applied solutions is an introduction to the process of the pre-treatment stage – disintegration, the aim of which is the fragmentation of the substrate's cellular structures before it goes to the digester. The result of the process is the increase of the raw material's susceptibility to biological degradation of the substrate, the increase of speed of the methane fermentation process and efficiency of the obtained biogas. This article presents an overview of the available methods of disintegration, and provides the results of the effectiveness of pre-treatment of biomass of the agricultural origin, conducted with the use of selected chemical, thermal and physical methods.
Pozyskanie biogazu w procesie fermentacji metanowej jest skomplikowane i wymaga optymalizacji, m.in. poprzez lepsze wykorzystanie biomasy przez bakterie. Jednym ze stosowanych rozwiązań jest wprowadzenie do procesu etapu obróbki wstępnej - dezintegracji, której celem jest rozdrobnienie struktur komórkowych substratu zanim trafi on do komory fermentacyjnej. Efektem procesu jest wzrost podatności surowca na rozkład biologiczny substratu, zwiększenie szybkości procesu fermentacji metanowej oraz wydajności uzyskiwanego biogazu. W artykule przedstawiono przegląd dostępnych metod dezintegracji oraz zamieszczono wyniki badań skuteczności obróbki wstępnej biomasy pochodzenia rolniczego, przeprowadzonej z wykorzystaniem wybranych metod chemicznych, termicznych i fizycznych.
Źródło:
Archiwum Motoryzacji; 2014, 66, 4; 33-41
1234-754X
2084-476X
Pojawia się w:
Archiwum Motoryzacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zrównoważone wykorzystanie biomasy na terenie Dolnego Śląska
Sustainable use of biomass in the Lower Silesia region
Autorzy:
Nowacka-Blachowska, A.
Resak, M.
Rogosz, B.
Tomaszewska, A.
Powiązania:
https://bibliotekanauki.pl/articles/169500.pdf
Data publikacji:
2016
Wydawca:
Poltegor-Instytut Instytut Górnictwa Odkrywkowego
Tematy:
zasoby biomasy
rośliny energetyczne
biogaz
potencjał energetyczny
biomass resources
energy plants
biogas
energy potential
Opis:
Jedną z najkorzystniejszych opcji zabezpieczenia dostaw energii i uniezależnienia się od dostaw paliw kopalnych jest wykorzystanie na szeroką skalę źródeł odnawialnych, w tym biomasy. W artykule przedstawiono wyniki inwentaryzacji zasobów biomasy w województwie dolnośląskim. Przeanalizowano zasoby biomasy drzewnej, rolniczej (słomy, siana i roślin energetycznych) oraz zdefiniowano potencjał biomasy do produkcji różnych rodzajów biogazu oraz biodiesla. Uzyskane wyniki porównano z obecnym zużyciem paliw i energii w województwie dolnośląskim. Analiza dolnośląskich zasobów biomasy wykazała, że największy potencjał bioenergetyczny, oprócz niewykorzystywanej do celów rolniczych słomy, mają obszary gruntów marginalnych i nieużytków. Obszary te można przeznaczyć pod uprawę roślin energetycznych do produkcji paliw spalanych w kotłach i w mniejszym stopniu pod uprawę kukurydzy do produkcji biogazu.
One of the most beneficial options to supply energy and gain more independence from fossil fuels is a large-scale use of renewable sources, biomass included. The article presents the inventory of biomass resources in the Lower Silesia region. Resources of wood biomass and agricultural biomass (i.e. straw, hay and energy crops) are analyzed, biomass potentials to pro duce various types of biogas and biodiesel are also determined. The analysis of the Lower Silesian biomass resources indicates that In addition to straw that is not used for agricultural purposes, energy crops for direct combustion and maize for biogas production, both cultivated on marginal lands, have the greatest potential for bioenergy generation.
Źródło:
Górnictwo Odkrywkowe; 2016, 57, 6; 48-53
0043-2075
Pojawia się w:
Górnictwo Odkrywkowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości i bariery w produkcji biogazu z biomasy trwałych użytków zielonych w Polsce
Possibilities and limitations in biogas production from permanent grassland biomass in Poland
Autorzy:
Mikołajczak, J.
Wróbel, B.
Jurkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/338568.pdf
Data publikacji:
2009
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
biogaz
biomasa
metan
trwałe użytki zielone
biogas
biomass
methane
permanent grasslands
Opis:
W Polsce powierzchnia trwałych użytków zielonych (TUZ) stanowi niewiele ponad 20% użytków rolnych. W ostatnich latach średnio około 20% powierzchni TUZ jest nieużytkowane, co prowadzi do procesu ich degradacji. Ewentualne nadwyżki biomasy z TUZ mogą być wykorzystywane na cele energetyczne, jako substrat do produkcji biogazu. Szacuje się, że w Polsce rocznie na cele energetyczne z TUZ można pozyskać około 2,3-3,4 mln Mg biomasy, z której można wyprodukować około 1,1-1,7 mld m³ ·rok-1 biogazu. Wydajność produkcji zarówno biogazu, jak i metanu z biomasy użytków zielonych zmienia się w szerokim zakresie i zależy od wielu czynników, takich jak intensywność użytkowania, skład gatunkowy oraz sposób konserwacji runi łąkowej. W rozwoju biogazowni rolniczych w Polsce istnieją wciąż pewne ograniczenia i trudności, z których najistotniejsze to bariery ekonomiczne, organizacyjne i prawne.
Grassland area in Poland constitutes a little over 20% of agriculture lands. In the last years c. 20% of permanent grasslands have remained unused, which have led to their degradation. Possible surpluses of the biomass from unexploited grasslands can be used for energetic purposes as a cosubstrate for biogas production. It is assumed that in Poland c. 2.3-3.4 million Mg of biomass can be obtained annually for energetic purposes from grasslands from which about 1.1-1.7 billion m³ of biogas can be produced. The efficiency of biogas production from grassland biomass varies largely and depends on many factors such as the intensity of utilisation, botanical composition and the methods of preservation of meadow sward. The development of biogas plants in Poland is limited mainly by economic, organizational and legal barriers.
Źródło:
Woda-Środowisko-Obszary Wiejskie; 2009, 9, 2; 139-155
1642-8145
Pojawia się w:
Woda-Środowisko-Obszary Wiejskie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biomasa kontra rolnictwo
Biomass versus agriculture
Autorzy:
Roszkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/286711.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kryzys energetyczny
biomasa
odpad
rynek żywności
rynek energii
ograniczenie obszarowe
biopaliwa I generacji
biopaliwa II generacji
biogaz
biorafineria
energy crisis
biomass
food markets
energy markets
land limitations
1-st generation biofuels
2nd generation biofuels
biogas
biorefineries
Opis:
Kryzys energetyczny. Czynniki ograniczające i uwarunkowania energetycznego wykorzystania biomasy rolniczej i leśnej. Konkurencyjność żywności, ograniczenia powierzchni rolniczych, zmiany cen. Biomasa organiczna jako źródła energii cieplnej, elektrycznej, surowce dla wytwarzania biopaliw, doskonalenie technologii, uwarunkowania środowiskowe. Prognozy ilościowe w krajach UE 27 i RP. Energetyczne perspektywy biomasy, węgla, energii jądrowej i wodoru.
Energy crisis. Limiting factors and determinants of agricultural and forest biomass use for energy purposes. Food competitiveness, limitations of agricultural land, price changes. Organic biomass as a source of thermal and electric energy, raw material for biofuel production, technology improvement, environmental determinants. Quantitative forecasts for the EU 27 countries and the Republic of Poland. Energy prospects for biomass, coal, nuclear energy and hydrogen.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 10(108), 10(108); 201-208
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biogas yield from sorghum bicolor of Biomass 140 variety
Uzysk biogazu z sorga cukrowego (Sorghum bicolor) odmiany Biomass 140
Autorzy:
Sałagan, P.
Dobek, T. K.
Wieliczko, P.
Kołosowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/286337.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
biogaz
sorgo cukrowe
gnojowica świńska
fermentacja metanowa
biogas
sorghum bicolor
pig manure
methane fermentation
Opis:
The paper presents results of physicochemical analysis of sorghum bicolor of Biomass 140 variety and pig liquid manure. Sorghum silage of different degree of chaff length was subjected to methane fermentation in two variants, taking the quality of pig liquid manure as a criterion. German standard DIN 38 414-S8 constituted a methodological basis. It was proved that both at better as well as at worse physicochemical parameters of pig liquid manure, sorghum bicolor silage of Biomass 140 variety may obtain high yield of methane in biogas. Research results prove that sorghum silage may be successfully used as a substrate for biogas plants. Sorghum because of its low water and soil requirements may constitute an alternative for maize on weaker stands. Sorghum ensilage method is the same as an ensilage technique of the most popular substrate for biogas plants, i.e. maize. During 26-days methane fermentation the highest average biogas yield was reported in a sample with silage A in variant I (254 1N*kg*smo-1) and in a sample with silage C in both variants, respectively 193 1N*kg*smo-1 and 207 1N*kg*smo-1.
W pracy przedstawiono wyniki analiz fizykochemicznych sorgo cukrowego Biomass 140 i gnojowicy świńskiej. Kiszonki z sorgo o różnym stopniu długości sieczki poddano fermentacji metanowej w dwóch wariantach, przyjmując za kryterium jakość gnojowicy świńskiej. Podstawę metodyczną stanowiła niemiecka norma DIN 38 414-S8. Wykazano, że zarówno przy lepszych, jak i gorszych parametrach fizykochemicznych gnojowicy świńskiej, kiszonka z sorgo cukrowego odmiany Biomass 140 może osiągnąć wysoki uzysk metanu w biogazie. Wyniki badań potwierdzają, że kiszonka z sorgo może być z powodzeniem stosowana jako substrat do biogazowni. Sorgo ze względu na małe wymagania wodne i glebowe może stanowić alternatywę dla kukurydzy, na słabszych stanowiskach. Sposób zakiszania sorgo jest tożsamy z techniką zakiszania najpopularniejszego substratu do biogazowni, jakim jest kukurydza. W trakcie trwania 26-dniowej fermentacji metanowej najwyższy średni uzysk biogazu odnotowano w próbie z kiszonką A w wariancie I (254 1N*kg*smo-1) oraz w próbie z kiszonką C w obu wariantach, odpowiednio 193 1N*kg*smo-1 i 207 1N*kg*smo-1.
Źródło:
Inżynieria Rolnicza; 2012, R. 16, nr 4, t. 2, 4, t. 2; 107-116
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Municipal waste as biomass – renewable energy source
Odpady komunalne jako biomasa - odnawialne źródło energii
Autorzy:
Kardasz, P.
Sitnik, L.
Bentkowska, M.
Dworaczyński, M.
Dziubecki, M.
Górniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/357497.pdf
Data publikacji:
2013
Wydawca:
Politechnika Śląska
Tematy:
biomasa
odnawialne źródła energii
biogaz
energetyka
odpady
gospodarka odpadami
biomass
renewable energy sources
biogas
power energy
waste
waste management
Opis:
This article presents selected information on the use of biomass as an energy source. Biomass is a renewable resource, it can be obtained from, inter alia, selected municipal waste. The most popular methods of generating energy from biomass is its combustion or fermentation. In Poland, the renewable energy sector is still small and should be developed because of the need to improve the condition of the environment and, at the same time, increasing demand for energy related to economic development. Energy from biomass is relatively unpopular. At the same time there is a problem of too big amount of waste that is not processed. Because of European Union regulations on the energetics and waste management it is required in Poland to adapt legislation in order to increase the share of renewable energy sources and to reduce the amount of waste landfilled. The solution may be energy production from biomass, derived from selected municipal waste.
Odpady komunalne jako biomasa - odnawialne źródło energii Poniższy artykuł przedstawia wybrane informacje na temat wykorzystania biomasy jako źródła energii. Biomasa jest surowcem odnawialnym, może być pozyskiwana między innymi z wyselekcjonowanych odpadów komunalnych. Najpopularniejszymi metodami pozyskiwania energii z biomasy jest jej spalanie lub fermentacja. W Polsce sektor odnawialnych źródeł energii jest wciąż niewielki, powinien być rozwijany ze względu na konieczność poprawy stanu środowiska naturalnego przy jednoczesnym, rosnącym zapotrzebowaniu na energię, związanym z rozwojem gospodarczym. Pozyskiwanie energii z biomasy jest stosunkowo mało popularne. Jednocześnie istnieje problem zbyt dużej ilości odpadów, które nie są poddawane przetworzeniu. Regulacje Unii Europejskiej w obszarze energetyki i gospodarki odpadami nakładają na Polskę obowiązek dostosowania prawodawstwa w celu zwiększenia udziału odnawialnych źródeł energii oraz zmniejszenia ilości odpadów, które trafiają na wysypiska. Rozwiązaniem może być pozyskiwanie energii z biomasy, pochodzącej z wyselekcjonowanych odpadów komunalnych.
Źródło:
Archiwum Gospodarki Odpadami i Ochrony Środowiska; 2013, 15, 4; 57-62
1733-4381
Pojawia się w:
Archiwum Gospodarki Odpadami i Ochrony Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie biomasy do produkcji energii elektrycznej oraz ciepła na terenie Czech
The use of biomass for production of electric energy and heat in the Czech Republic
Autorzy:
Kára, J.
Rutkowski, K.
Adamovský, R.
Powiązania:
https://bibliotekanauki.pl/articles/292019.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
odnawialne źródło energii
biomasa
biogaz
roślina energetyczna
energia elektryczna
ciepło
Czechy
renowable energy sources
biomass
biogas
energy plants
heat
electric energy
Czech Republic
Opis:
W artykule przeprowadzono analizę aktualnego stanu oraz perspektywy wykorzystania biomasy do wytwarzania energii elektrycznej oraz ciepła. W publikacji przedstawiono legislacyjne posunięcia wspierające wykorzystanie odnawialnych źródeł energii w Czechach oraz warunki, jakie należy spełnić, aby zrealizować założony poziom wykorzystania odnawialnych źródeł energii w 2010 roku.
The article contains an analysis of current condition, and prospects for using biomass to produce electric energy and heat. The paper presents legislative moves supporting the use of renewable energy sources in the Czech Republic and conditions to be satisfied to reach accepted level of the use of renewable energy sources in 2010.
Źródło:
Inżynieria Rolnicza; 2007, R. 11, nr 9 (97), 9 (97); 57-63
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biomass as a Renewable Source of Energy
Autorzy:
Drożyner, P.
Rejmer, W.
Starowicz, P.
Klasa, A.
Skibniewska, K. A.
Powiązania:
https://bibliotekanauki.pl/articles/298101.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
biogas
methane
energy dedicated crops
renewable energy
Opis:
In this paper state of art on known and potential biomass sources is reviewed. The review will consider energy dedicated crops and waste types that are already applied for clean energy purposes as well as potential ones. The resources can be applied for biofuels, bioethanol, methane, hydrogen production by means of various processes (methane fermentation, pyrolysys etc). The environmental and economical benefits of biomass application as a renewable energy source are also described.
Źródło:
Technical Sciences / University of Warmia and Mazury in Olsztyn; 2013, 16(3); 211-220
1505-4675
2083-4527
Pojawia się w:
Technical Sciences / University of Warmia and Mazury in Olsztyn
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies