Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "duże zbiory danych" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Big data significance in remote medical diagnostics based on deep learning techniques
Autorzy:
Kwaśniewska, A.
Giczewska, A.
Rumiński, J.
Powiązania:
https://bibliotekanauki.pl/articles/1940561.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska
Tematy:
telemedicine
deep learning
multimedia databases
big data
telemedycyna
uczenie głębokie
multimedialne bazy danych
duże zbiory danych
Opis:
In this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential challenges of using, storing and transferring sensitive patient data are discussed.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2017, 21, 4; 309-319
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Big data i cyfrowa transformacja w NOK - ramy instytucjonalne, korzyści, wyzwania
Big Data and Digital Transformation of SAIs – Institutional Framework, Benefits and Challenges
Autorzy:
BĘDZIESZAK, MARCIN
Powiązania:
https://bibliotekanauki.pl/articles/30148640.pdf
Data publikacji:
2023-12
Wydawca:
Najwyższa Izba Kontroli
Tematy:
analityka danych
big data
duże zbiory danych
cyfrowa transformacja w NOK
data analytics
digital transformation in SAIs
Opis:
Ostatnie lata przyniosły szybki rozwój technologii przetwarzania danych, poczynając od uczenia maszynowego, przez big data (zbiory danych) do sztucznej inteligencji (ang. artificial intelligence, AI). W konsekwencji zwiększają się możliwości ich wykorzystania we wszystkich dziedzinach wiedzy (m.in. bezpieczeństwo, finanse, handel, marketing). Komisja Europejska oszacowała udział gospodarki opartej na danych w unijnym PKB na 3,9%1 w 2022 r. Obszarem wykorzystania big data stopniowo staje się działalność najwyższych organów kontroli (NOK). Wiąże się to jednak z wieloma wyzwaniami oraz koniecznością dokonania zmian metodycznych i organizacyjnych, ale może doprowadzić do skuteczniejszej kontroli administracji publicznej i innych podmiotów, a jednocześnie do lepszego wykorzystania zasobów.
Over the last years, we have been witnessing a fast development of data processing, starting from machine learning, through big data, to artificial intelligence (AI), which results in new opportunities for using them in many areas (e.g. security, finance, trade, marketing). The European Commission estimates that the share of data based economy in the EU gross domestic product reached 3.9 percent in 2022. The area where big data has been gradually used is the activity of Supreme Audit Institutions (SAIs). There are, however, many challenges here, and the need to introduce methodological and organisational changes. Yet this may lead to more effective auditing of the public administration and other entities, and to better spending of resources. The aim of the article is to discuss opportunities of using big data tools in the activities of Supreme Audit Institutions. The first part of the article presents the significance of this technology in the public sector, the second part discusses the conditions related to using big data, and the last part contains considerations related to digital transformation of SAIs, as well as factors that have an impact on the use of big data in SAIs.
Źródło:
Kontrola Państwowa; 2023, 68, 6 (413); 58-70
0452-5027
Pojawia się w:
Kontrola Państwowa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Processing of satellite data in the cloud
Autorzy:
Proficz, J.
Drypczewski, K.
Powiązania:
https://bibliotekanauki.pl/articles/1940555.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska
Tematy:
Apache Spark
satellite data
Sentinel-2
ESA
big data
cloud
OpenStack
dane satelitarne
duże zbiory danych
chmura
Opis:
The dynamic development of digital technologies, especially those dedicated to devices generating large data streams, such as all kinds of measurement equipment (temperature and humidity sensors, cameras, radio-telescopes and satellites – Internet of Things) enables more in-depth analysis of the surrounding reality, including better understanding of various natural phenomenon, starting from atomic level reactions, through macroscopic processes (e.g. meteorology) to observation of the Earth and the outer space. On the other hand such a large quantitative improvement requires a great number of processing and storage resources, resulting in the recent rapid development of Big Data technologies. Since 2015, the European Space Agency (ESA) has been providing a great amount of data gathered by exploratory equipment: a collection of Sentinel satellites – which perform Earth observation using various measurement techniques. For example Sentinel-2 provides a stream of digital photos, including images of the Baltic Sea and the whole territory of Poland. This data is used in an experimental installation of a Big Data processing system based on the open source software at the Academic Computer Center in Gdansk. The center has one of the most powerful supercomputers in Poland – the Tryton computing cluster, consisting of 1600 nodes interconnected by a fast Infiniband network (56 Gbps) and over 6 PB of storage. Some of these nodes are used as a computational cloud supervised by an OpenStack platform, where the Sentinel-2 data is processed. A subsystem of the automatic, perpetual data download to object storage (based on Swift) is deployed, the required software libraries for the image processing are configured and the Apache Spark cluster has been set up. The above system enables gathering and analysis of the recorded satellite images and the associated metadata, benefiting from the parallel computation mechanisms. This paper describes the above solution including its technical aspects.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2017, 21, 4; 365-377
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zone estimation with cluster analysis of public transport stops
Ocena strefowa z analizą skupień przystanków transportu publicznego
Autorzy:
Horváth, B.
Nagy, V.
Powiązania:
https://bibliotekanauki.pl/articles/192544.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
public transport
big data
time series
similarity matrix
clustering
transport publiczny
duże zbiory danych
szeregi czasowe
podobieństwa macierzy
grupowanie
Opis:
Nowadays the data sets are spreading continually, generated by different devices and systems. The public transport is also not an exception in this. The modern GPS based tracking systems and the electronic tickets are producing lot of data, and we could use them for improving the service level. In the right case, these data are storing, and the service suppliers are not dealing with its information content, but, on the other hand, maybe they are just deleting these, in the interest of the avoidance of digital space occupancy. However, these data are processable with the modern devices and methods, and we can use them for information obtaining. Thanks to the spread of data mining, these tools are not appearing only in marketing research but in the most various kind of scientific area too, and they are advertising a new scientific revolution. Although the importance of these data sources is essential it is not widespread in general in transport planning, only in some specific areas [1] as described by Csiszár et al. This article presents possible application of the digital raw materials, taking the public transport passengers boarding information as base. We created a three step method which could be useful in automatic zone shaping or to supervise the manually created zone borders. It is also able to give help in land-usage examinations. The procedure is effective in making traveling chains from smart card data and in creation of origin destination matrix from check-in data. In this article we are showing how the zone distribution is possible with the assistance of different distance measurement methods and clustering procedures, and we are presenting the results on the example of a selected city.
Obecnie nieustannie powstają różne zbiory danych, generowane przez różne urządzenia i systemy. Transport publiczny nie jest w tym zakresie wyjątkiem. Nowoczesne systemy monitorowania oparte na GPS i bilety elektroniczne wytwarzają duże ilości danych, i moglibyśmy je wykorzystać dla poprawy poziomu usług. Z jednej strony dane te są przechowywane, a dostawcy usług nie mają do czynienia z zawartością informacji, ale z drugiej strony, być może są one po prostu usuwane, aby ograniczyć obciążanie cyfrowej przestrzeni. Dane te mogą być przetwarzane dzięki nowoczesnym urządzeniom i metodom, i możemy je wykorzystać do uzyskania informacji. Dzięki rozprzestrzenianiu eksploracji danych, narzędzia te pojawiają się nie tylko w badaniach marketingowych, ale w większości różnych działań badawczych, i reklamują one nową rewolucję naukową. Chociaż znaczenie tych źródeł danych jest zasadnicze, nie jest to rozpowszechnione w planowaniu transportu, a jedynie w pewnych określonych obszarach [1], tak jak pisze Csiszár i in. W artykule przedstawiono możliwości zastosowania materiałów nieprzetworzonych, biorąc jako podstawę informacje o pasażerach podróżujących transportem publicznym. Stworzono metodę trzech kroków, która może być przydatna do automatycznego kształtowania strefy lub do nadzorowania granic stref utworzonych konwencjonalnie. Może też przydać się przy kontroli gruntów użytkowych. Procedura ta jest skuteczna w tworzeniu łańcuchów podróży z danych z kart inteligentnych oraz w tworzeniu macierzy żródło-cel na podstawie danych zameldowania. W artykule pokazano, w jaki sposób możliwa jest dystrybucja stref, za pomocą różnych metod pomiaru odległości i procedur gromadzenia, i zaprezentowano tego efekty na przykładzie wybranego miasta.
Źródło:
Transport Miejski i Regionalny; 2016, 7; 9-12
1732-5153
Pojawia się w:
Transport Miejski i Regionalny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Big Data – szanse i zagrożenia
Big Data – chances and threats
Autorzy:
RACZYŃSKA, Maria
Powiązania:
https://bibliotekanauki.pl/articles/455965.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Rzeszowski
Tematy:
duże ilości danych
zbiory danych
uporządkowanie danych
przetwarzanie w chmurze
prywatność człowieka
big data
sets of data
cloud computing
privacy
human
Opis:
W artykule przedstawione zostały różne aspekty zjawiska Big Data. Ukazany został wpływ technologii informacyjnej na analizę różnorodnych dostępnych w ogromnych ilościach zbiorów danych, często w czasie rzeczywistym. Przedstawione zostały przykłady wykorzystania Big Data. Zwrócona została także uwaga na kwestie, które wymagają badań w cyfrowym świecie danych.
The article presents the different aspects of phenomenon of Big Data. It shows is effect information technology on the analysis of various available in huge amounts of data sets in real time. Presented are examples of Big Data. The return was a note on the issues that require research data in the digital world.
Źródło:
Edukacja-Technika-Informatyka; 2013, 4, 2; 29-37
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies