Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "compressor map" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Development of flow and efficiency characteristics of an axial compressor with an analytical method including cooling air extraction and variable inlet guide vane angle
Autorzy:
Trawiński, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1955039.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
axial compressor
compressor characteristics
compressor map
IGV
bleed air
Opis:
The development of a reliable mathematical model of an axial compressor requires applying flow and efficiency characteristics. This approach provides performance parameters of a machine depending on varying conditions. In this paper, a method for developing characteristics of an axial compressor is presented, based on general compressor maps available in the literature or measurement data from industrial facilities. The novelty that constitutes the core of this article is introducing an improved method describing the performance lines of an axial compressor with the modified ellipse equation. The proposed model is extended with bleed air extraction for the purposes of cooling the blades in the expander part of the gas turbine. The variable inlet guide vanes angle is also considered using the vane angle correction factor. All developed dependencies are fully analytical. The presented approach does not require knowledge of machine geometry. The set of input parameters is based on reference data. The presented approach makes it possible to determine the allowed operating area and study the machine’s performance in variable conditions. The introduced mathematical correlations provide a fully analytical study of optimum operating points concerning the chosen criterion. The final section presents a mathematical model of an axial compressor built using the developed method. A detailed study of the exemplary flow and efficiency characteristics of an axial compressor operating with a gas turbine is also provided.
Źródło:
Archives of Thermodynamics; 2021, 42, 4; 17-46
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Axial Compressor Model Simplification and Mesh Density on Surge Margin Evaluation
Autorzy:
Muchowski, Rafał
Gubernat, Sławomir Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2023311.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
CFD
axial compressor
surge margin
jet engine
compressor map
grid dependence
Opis:
The menace of surge occurrence in the compressors is taken very seriously and its avoidance became a fundamental for the design of any modern jet engines. Nowadays, a problem with appropriate evaluation of the compressor surge margin while considering different simplifications of three-dimensional CFD model is still present. For that purpose, this article presents a comparison between the measurement data and several variants of 3D CFD models characterized by a specific mesh density. To calculate all the results on which the comparisons and conclusions are based, an 8-stage axial compressor is taken into account. Flow conditions of the machine are computed for three part load speeds: The low, the mid and the high one respecting the variable guide vanes schedule fitted to the specific load. For each of speed variants a four mesh configurations were generated: coarse, medium, fine and extra-fine. All speed configurations were treated with two different turbulence models – Wilcox k-ω and Menter’s SST k-ω, giving ultimately 15 CFD models, calculated with the TRACE solver using an initialization based on a circumferentially averaged flow solution delivered by the Streamline Curvature Method. During the study an additional assessment of reference grid independence was performed and the mesh convergence has been achieved. A comparison between turbulence models and the measurement proves that SST turbulence model is not well distributed through the speeds in compare to the measurement data and the Wilcox turbulence model. Inconsistency of sensitivity in the mesh coarsening for different rotational speeds was found. Increasing the mesh roughness level has to be executed for each speed separately. Overall compressor map shows that shift of the Pressure Ratio and the Mass Flow decreases with lower rotational speed. Neglecting the system add-ons like labyrinth sealing volumes, bleed-ports and other leakages has a visible influence on deviations from the measurements. Because of intended future use in design and optimization the “Medium” grid with Wilcox k-ω turbulence model was chosen, being a good representation of the Rig characteristics with reduction of the computing time.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 3; 243-253
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of inlet distortion effects on axial compressor performance based on streamline curvature method
Autorzy:
Abbasi, S.
Pirnia, A.
Taghavi-Zenouz, R.
Powiązania:
https://bibliotekanauki.pl/articles/281973.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
axial compressor
performance map
inlet distortion
surge margin
streamline curvature
Opis:
In this paper, the effects of inlet flow distortion on performance maps and details of the flow field are investigated using the Streamline Curvature Method. The results are presented for both design and off-design conditions and compared with experimental data, which shows good agreement. The effects of inlet flow distortion are investigated by inlet total pressure variation in three different cases in the way that the average total pressure remains constant and equal to the design value. The results show that a relative increase in the total pressure at tip causes an increase in the pressure ratio and efficiency as well as a better performance in the choking region. Alternatively, a relative increase in the total pressure in hub causes opposite behavior and a better performance at the surging region.
Źródło:
Journal of Theoretical and Applied Mechanics; 2018, 56, 4; 1005-1015
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies