Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wicher, B." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Selected algorithms of MEMS accelerometers signal processing in burglary detector application
Autorzy:
Fabiański, B.
Nowopolski, K.
Wicher, B.
Powiązania:
https://bibliotekanauki.pl/articles/376276.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
MEMS
accelerometer sensor
data streaming
DSP
low-power MCU
alarm system
artificial neural network
Opis:
In the paper, implementations and results of operation of artificial neural network applied as a burglary classifier are presented in comparison to solution with a direct digital signal processing (DSP) approach. The neural network operates in a mobile access control device, that may be easily attached to a door. The device is an integrated system, equipped with several sensors based on microelectromechanical systems (MEMS) technology. Due to limited effectiveness of simple, conditional logic algorithms on acquired signal samples, a more sophisticated approaches are investigated. Data acquisition during imitation of various burglary scenarios and further processing of the recorded signals are described in the paper. Selection of the neural network structure and pre-processing methods of sensor signals are presented as well. The direct DSP algorithm based on the application of the properties of application phenomena is shown in the same way. Finally, results of selected algorithms implementation in a low-power 32-bit microcontroller system are presented. Limitation of the platform responsiveness in the real-time conditions and comparison of used classification methods are discussed in the paper conclusions.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2016, 87; 267-278
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Burglary detection based on accelometric data using selected signal processing algorithms
Autorzy:
Fabiański, B.
Nowopolski, K.
Wicher, B.
Powiązania:
https://bibliotekanauki.pl/articles/97596.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
MEMS
accelerometer sensor
data streaming
DSP
low–power MCU
alarm system
artificial neural network
Opis:
The paper presents two approaches to the problem of burglary detection. The first one utilizes direct signal processing, while the other – artificial neural network (ANN). Both algorithms are compared in real operating conditions. The implementation of the algorithms was performed in a portable, battery operating devices that can be easily attached to the door. For direct comparison, two identical devices including several MEMS accelerometers and 32 bit microcontroller have been used – each with one algorithm implemented. The goal of using artificial neural network algorithm was to improve the performance of the burglary detection system in comparison to classical direct signal processing. The structure of ANN and required pre – processing of the input data, is presented and discussed as well. The article also describes the research system required to collecting the data for ANN training and to directly compare both algorithms. Finally, the results of behavior of the classification methods in real actual conditions is discussed.
Źródło:
Computer Applications in Electrical Engineering; 2016, 14; 313-327
1508-4248
Pojawia się w:
Computer Applications in Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies