In the paper, implementations and results of operation of artificial neural network applied
as a burglary classifier are presented in comparison to solution with a direct digital
signal processing (DSP) approach. The neural network operates in a mobile access control
device, that may be easily attached to a door. The device is an integrated system,
equipped with several sensors based on microelectromechanical systems (MEMS) technology.
Due to limited effectiveness of simple, conditional logic algorithms on acquired
signal samples, a more sophisticated approaches are investigated. Data acquisition during
imitation of various burglary scenarios and further processing of the recorded signals
are described in the paper. Selection of the neural network structure and pre-processing
methods of sensor signals are presented as well. The direct DSP algorithm based on the
application of the properties of application phenomena is shown in the same way. Finally,
results of selected algorithms implementation in a low-power 32-bit microcontroller
system are presented. Limitation of the platform responsiveness in the real-time conditions
and comparison of used classification methods are discussed in the paper conclusions.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00