Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "approximation algorithms" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Approximation of Jacobian inverse kinematics algorithms
Autorzy:
Tchoń, K.
Karpińska, J.
Janiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/929992.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
kinematyka odwrotna
pseudoodwrotny Jacobian
aproksymacja
robot inverse kinematics
extended Jacobian
Jacobian pseudoinverse
approximation
Opis:
This paper addresses the synthesis problem of Jacobian inverse kinematics algorithms for stationary manipulators and mobile robots. Special attention is paid to the design of extended Jacobian algorithms that approximate the Jacobian pseudoinverse algorithm. Two approaches to the approximation problem are developed: one relies on variational calculus, the other is differential geometric. Example designs of the extended Jacobian inverse kinematics algorithm for 3DOF manipulators as well as for the unicycle mobile robot illustrate the theoretical concepts.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 4; 519-531
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy TSK network for approximation of static and dynamic functions
Autorzy:
Linh, T.
Osowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/205951.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
algorytm uczenia się
aproksymacja
sieć neuronowo-rozmyta
approximation
learning algorithms
neuro-fuzzy networks
Opis:
The paper presents the neuro-fuzzy network in application to the approximation of the static and dynamic functions. The network implements the Takagi-Sugeno inference rules. The learning algorithm is based on the hybrid approach, splitting the learning phase into two stages : the adaptation of the linear output weights using the SVD algorithm and the conventional steepest descent backpropagation rule in application to the adaptation of the nonlinear parameters of the membership functions. The new approach to the generation of the inference rules, based on the fuzzy self-organization is proposed and the algorithm of automatic determination of the number of these rules has been also implemented. The method has been applied for the off-line modelling of static nonlinear relations and on-line simulation of the dynamic systems.
Źródło:
Control and Cybernetics; 2002, 31, 2; 309-326
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Struktury i algorytmy współdziałania regulacji predykcyjnej i bieżącej optymalizacji ekonomicznej
Structures and algorithms of co-operation of predictive control and on-line economic optimisation
Autorzy:
Ławryńczuk, M.
Marusak, P.
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/153748.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
regulacja predykcyjna
optymalizacja
aproksymacja
linearyzacja
systemy nieliniowe
sterowanie z ograniczeniami
predictive control
optimisation
approximation
linearisation
nonlinear control systems
constrained control
Opis:
Celem pracy jest omówienie zagadnienia współpracy algorytmów regulacji predykcyjnej z nieliniową optymalizacją ekonomiczną. Problem ten jest szczególnie istotny wówczas, gdy dynamika zmian zakłóceń jest porównywalna z dynamiką procesu, ponieważ zastosowanie klasycznej warstwowej (hierarchicznej) struktury sterowania z rzadko powtarzaną optymalizacją ekonomiczną może nie być efektywne. Omawiane są dwie klasy struktur. W pierwszym przypadku stosuje się pomocniczą optymalizację ekonomiczną, której zadaniem jest aktualizacja punktu pracy poprzedzająca każdą interwencję algorytmu regulacji predykcyjnej. W dodatkowym liniowym lub kwadratowym zadaniu optymalizacji ekonomicznej stosuje się aktualizowaną na bieżąco liniową, liniowo-kwadratową lub odcinkowo-liniową aproksymację modelu. W drugim przypadku zadanie optymalizacji ekonomicznej i algorytm regulacji predykcyjnej są zintegrowane w pojedynczym problemie optymalizacji. Aby ograniczyć nakład obliczeń stosuje się aktualizowaną na bieżąco liniową lub liniowo-kwadratową aproksymację modelu, dzięki czemu otrzymuje się zadanie optymalizacji ekonomicznej w postaci problemu programowania kwadratowego.
The paper is concerned with co-operation of model predictive control (MPC) algorithms with nonlinear economic optimisation. The problem is particularly important when dynamics of disturbances is comparable with dynamics of the process itself, since in such cases application of the classical multilayer (hierarchical) structure with infrequent economic optimisation may be not efficient. Two classes of control structures are investigated. In the first class an additional simplified optimisation is used which recalculates the operating point as frequently as the MPC controller executes. In the supplementary linear or quadratic programming optimisation problem approximate linear, linear-quadratic (updated on-line) or piecewise-linear models of the process are used. In the second class the economic optimisation and MPC manipulated variables computational load, approximate linear or linear-quadratic (updated on-line) models are used, then the resulting optimisation problem is of quadratic programming type.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 10, 10; 55-61
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies