- Tytuł:
- Unique factorization theorem
- Autorzy:
- Mihók, Peter
- Powiązania:
- https://bibliotekanauki.pl/articles/743745.pdf
- Data publikacji:
- 2000
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
induced-hereditary
additive property of graphs
reducible property of graphs
unique factorization
uniquely partitionable graphs
generating sets - Opis:
- A property of graphs is any class of graphs closed under isomorphism. A property of graphs is induced-hereditary and additive if it is closed under taking induced subgraphs and disjoint unions of graphs, respectively. Let ₁,₂, ...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable (G has property ₁ º₂ º... ºₙ) if the vertex set V(G) of G can be partitioned into n sets V₁,V₂,..., Vₙ such that the subgraph $G[V_i]$ of G induced by V_i belongs to $_i$; i = 1,2,...,n. A property is said to be reducible if there exist properties ₁ and ₂ such that = ₁ º₂; otherwise the property is irreducible. We prove that every additive and induced-hereditary property is uniquely factorizable into irreducible factors. Moreover the unique factorization implies the existence of uniquely (₁,₂, ...,ₙ)-partitionable graphs for any irreducible properties ₁,₂, ...,ₙ.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2000, 20, 1; 143-154
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki