Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ramsey numbers" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Planar Ramsey numbers
Autorzy:
Gorgol, Izolda
Powiązania:
https://bibliotekanauki.pl/articles/744298.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Ramsey number
planar graph
induced subgraph
Opis:
The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 45-50
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Another View of Bipartite Ramsey Numbers
Autorzy:
Bi, Zhenming
Chartrand, Gary
Zhang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/31342309.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Ramsey number
bipartite Ramsey number
s -bipartite Ramsey number
Opis:
For bipartite graphs F and H and a positive integer s, the s-bipartite Ramsey number BRs(F,H) of F and H is the smallest integer t with t ≥ s such that every red-blue coloring of Ks,t results in a red F or a blue H. We evaluate this number for all positive integers s when F = K2,2 and H ∈ {K2,3,K3,3}.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 587-605
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multicolor Ramsey numbers for paths and cycles
Autorzy:
Dzido, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/744302.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge coloring
Ramsey number
Opis:
For given graphs G₁,G₂,...,Gₖ, k ≥ 2, the multicolor Ramsey number R(G₁,G₂,...,Gₖ) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some $G_i$, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cₘ,Cₘ,...,Cₘ), where m ≥ 8 is even and Cₘ is the cycle on m vertices. In addition, we provide exact values for Ramsey numbers R(P₃,Cₘ,Cₚ), where P₃ is the path on 3 vertices, and several values for R(Pₗ,Pₘ,Cₚ), where l,m,p ≥ 2. In this paper we present new results in this field as well as some interesting conjectures.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 1-2; 57-65
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multicolor Ramsey numbers for some paths and cycles
Autorzy:
Bielak, Halina
Powiązania:
https://bibliotekanauki.pl/articles/743153.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
cycle
path
Ramsey number
Opis:
We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2,3].
Źródło:
Discussiones Mathematicae Graph Theory; 2009, 29, 2; 209-218
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths
Autorzy:
Bielak, Halina
Dąbrowska, Kinga
Powiązania:
https://bibliotekanauki.pl/articles/747276.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Cycle
path
Ramsey number
Turan number
Opis:
The Ramsey number \(R(G, H)\) for a pair of graphs \(G\) and \(H\) is defined as the smallest integer \(n\) such that, for any graph \(F\) on \(n\) vertices, either \(F\) contains \(G\) or \(\overline{F}\) contains \(H\) as a subgraph, where \(\overline{F}\) denotes the complement of \(F\). We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers \(R(K_1+L_n, P_m)\) and \(R(K_1+L_n, C_m)\) for some integers \(m\), \(n\), where \(L_n\) is a linear forest of order \(n\) with at least one edge.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2015, 69, 2
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on Upper Bounds for Some Generalized Folkman Numbers
Autorzy:
Xu, Xiaodong
Liang, Meilian
Radziszowski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/31343184.pdf
Data publikacji:
2019-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Folkman number
Ramsey number
Opis:
We present some new constructive upper bounds based on product graphs for generalized vertex Folkman numbers. They lead to new upper bounds for some special cases of generalized edge Folkman numbers, including the cases Fe(K3, K4 − e; K5) ≤ 27 and Fe(K4 − e, K4 − e; K5) ≤ 51. The latter bound follows from a construction of a K5-free graph on 51 vertices, for which every edge coloring with two colors contains a monochromatic K4 − e.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 4; 939-950
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies