Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "RNA degradation" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Computational prediction of non-enzymatic RNA degradation patterns
Autorzy:
Rybarczyk, Agnieszka
Jackowiak, Paulina
Figlerowicz, Marek
Blazewicz, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1038733.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
RNA degradation
non-enzymatic RNA hydrolysis
branch-and-cut algorithm
Opis:
Since the beginning of the 21st century, an increasing interest in the research of ribonucleic acids has been observed in response to a surprising discovery of the role that RNA molecules play in the biological systems. It was demonstrated that they do not only take part in the protein synthesis (mRNA, rRNA, tRNA) but also are involved in the regulation of gene expression. Several classes of small regulatory RNAs have been discovered (e.g. microRNA, small interfering RNA, piwiRNA). Most of them are excised from specific double-stranded RNA precursors by enzymes that belong to the RNaseIII family (Drosha, Dicer or Dicer-like proteins). More recently, it has been shown that small regulatory RNAs are also generated as stable intermediates of RNA degradation (the so called RNA fragments originating from tRNA, snRNA, snoRNA etc.). Unfortunately, the mechanisms underlying biogenesis of the RNA fragments remain unclear. It is thought that several factors may be involved in the formation of the RNA fragments. The most important are the specific RNases, RNA-protein interactions and RNA structure. In this work, we focus on the RNA primary and secondary structures as factors influencing the RNA stability and consequently the pattern of RNA fragmentation. Earlier, we identified the major structural factors affecting non-enzymatic RNA degradation. Now, based on these data, we developed a new branch-and-cut algorithm that is able to predict the products of large RNA molecules' hydrolysis in vitro. We also present the experimental data that verify the results generated using this algorithm.
Źródło:
Acta Biochimica Polonica; 2016, 63, 4; 745-751
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tabu search for the RNA partial degradation problem
Autorzy:
Rybarczyk, A.
Hertz, A.
Kasprzak, M.
Blazewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/330324.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
RNA degradation
tabu search
bioinformatics
rozkład RNA
algorytm tabu search
bioinformatyka
Opis:
In recent years, a growing interest has been observed in research on RNA (ribonucleic acid), primarily due to the discovery of the role of RNA molecules in biological systems. They not only serve as templates in protein synthesis or as adapters in the translation process, but also influence and are involved in the regulation of gene expression. The RNA degradation process is now heavily studied as a potential source of such riboregulators. In this paper, we consider the so-called RNA partial degradation problem (RNA PDP). By solving this combinatorial problem, one can reconstruct a given RNA molecule, having as input the results of the biochemical analysis of its degradation, which possibly contain errors (false negatives or false positives). From the computational point of view the RNA PDP is strongly NP-hard. Hence, there is a need for developing algorithms that construct good suboptimal solutions. We propose a heuristic approach, in which two tabu search algorithms cooperate, in order to reconstruct an RNA molecule. Computational tests clearly demonstrate that the proposed approach fits well the biological problem and allows to achieve near-optimal results. The algorithm is freely available at http://www.cs.put.poznan.pl/arybarczyk/tabusearch.php.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 2; 401-415
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Antiviral Activities of Zn2+ Ions for Viral Prevention, Replication, Capsid Protein in Intracellular Proliferation of Viruses
Autorzy:
Ishida, Tsuneo
Powiązania:
https://bibliotekanauki.pl/articles/1177895.pdf
Data publikacji:
2018
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Capsid protein
DNA/RNA virus
HIV
RNA degradation
ROS
Replication
Zinc finger
Opis:
In zinc homeostasis, zinc transporters ZIP and ZnT show tissue specificity and developmental and stimulus responsive expression patterns. The course of the life cycles of viral infections is governed by complex interactions between the virus and the host cellular system. Viruses depend on a host cell for their protein synthesis that the virus must first bind to the host cell, and then the virus enters in the cytoplasm which the genome is liberated from the protective capsid and, either in the nucleus or in the cytoplasm. The use of cellular zinc metalloproteases is effective for virus entry and coronavirus fusion. Molecular aspects of dengue virus genome uncoating and the fate of the capsid protein and RNA genome early during infection were investigated and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. These results provide the first insights for antiviral intervention into dengue virus uncoating by Zn-binding degradation and enzyme inhibition of nucleocapsid, capsid protein, viral genome. AZPs inhibit virus DNA replication. Increasing the intracellular Zn2+ concentration with zinc-ionophores like pyrithione can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. ZAP is a host antiviral factor that specifically inhibit the replication of certain viruses, including HIV-1, Sindbis virus, and Ebola virus. ZAP specifically binds to the viral mRNA and recruits the cellular RNA degradation machinery to degrade the target RNA, while molecular mechanism by which ZAP inhibits target RNA expression and regulation of antiviral activity have been remained unclear. ROS as byproducts play an important role in cell signaling and regulate hormone action, growth factors, cytokines, transcription, apoptosis, iron transport, immunomodulation, and neuromodulation which many retroviruses, DNA and RNA viruses can cause cell death by generating oxidative stress in infected cells.
Źródło:
World Scientific News; 2018, 97; 28-50
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies