Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Czajkowski, Andrzej" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Prezentacja twierdzeń o wzajemności w obwodach elektrycznych z użyciem programów MathCAD i PSpice
Theorems on mutuality presentation in electrical circuits by using MathCAD and PSpice programs
Autorzy:
Frączak, Piotr Stanisław
Czajkowski, Andrzej Antoni
Powiązania:
https://bibliotekanauki.pl/articles/135868.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
twierdzenie o wzajemności oczkowe
twierdzenie o wzajemności węzłowe
twierdzenia o wzajemności w programach MathCAD i PSpice
MathCAD
PSpice
theorem on ring reciprocity
theorem on node reciprocity
reciprocity theorems in MathCAD and PSpice programs
Opis:
Wstęp i cele: W pracy przedstawiono analizę obwodów elektrycznych liniowych, rozgałęzionych z jednym źródłem energii zapisanych w postaci macierzowej w ujęciu twierdzeń o wzajemności. Twierdzenie o wzajemności oczkowe i twierdzenie o wzajemności węzłowe. Twierdzenia te wynikają bezpośrednio z symetrii macierzy impedancji własnych i wzajemnych oraz macierzy admitancji własnych i wzajemnych. Celem pracy jest przedstawienie analizy obwodów rozgałęzionych w kontekście twierdzeń o wzajemności w środowiskach programów numerycznych MathCAD i PSpice. Materiał i metody: Materiał stanowią źródła z literatury z zakresu elektrotechniki. W pracy zastosowano metodę analizy teoretycznej. Wyniki: Twierdzenie o wzajemności oczkowe zastosowano do analizy prądów w obwodach liniowych, rozgałęzionych obliczanych metodą prądów oczkowych Maxwella. Z kolei twierdzenie o wzajemności węzłowe zastosowano do analizy napięć w obwodach liniowych, rozgałęzionych obliczanych metodą potencjałów węzłowych Cortiego. Obliczenie obwodów elektrycznych w kontekście twierdzeń o wzajemności przeprowadzono w środowiskach programów numerycznych MathCAD i Pspice. Wnioski: Twierdzenie o wzajemności oczkowe w postaci macierzowej w programie MathCAD można wykorzystać do weryfikacji obliczeń prądów w obwodach elektrycznych metodą prądu oczkowych Maxwella. Twierdzenie o wzajemności węzłowe w postaci macierzowej w programie MathCAD można wykorzystać do weryfikacji obliczeń napięć w obwodach elektrycznych metodą napięć węzłowych Cortiego.
Introduction and aim: The paper presents the analysis of linear branched circuits with one energy source in the form of a matrix in terms of claims about reciprocity. Theorems on mesh reciprocity and the theorem on node reciprocity. These theorems result directly from the symmetry of the matrix of own impedances and mutual impedances, as well as the matrix of their own and mutual admittances. The aim of the work is to present the analysis of branched circuits in the context of theorems on reciprocity in MathCAD and PSpice numerical programs environments. Material and methods: Material covers some sources based on the literature in the field of electrotechnics. The method of theoretical analysis has been shown in the paper. Results: The theorem on ring reciprocity was used to analyze the currents in linear branched circuits calculated using Maxwell’s ring currents. In turn, the theorem on node reciprocity was used to analyze the voltage in linear branched circuits, calculated using the Cortie nodal potentials method. The calculation of electrical circuits in the context of claims of reciprocity was carried out in the numerical programs environments of MathCAD and PSpice. Conclusion: Theorem of ring reciprocity in the matrix form in the MathCAD program can be used to verify the calculations of currents in electric circuits of nodes current method of Maxwell. Theorem of nodes reciprocity in the matrix form in the MathCAD program can be used to verify the calculation of voltage in electrical circuits using nodal voltages of Corti.
Źródło:
Problemy Nauk Stosowanych; 2018, 9; 21-32
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda równań różnicowych dla opisu stanu nieustalonego obwodu szeregowego RLC załączonego do napięcia sinusoidalnego z użyciem programu MathCAD
Difference equation method for description of transient state in the RLC circuit with sinusoidal excitation by using MathCAD program
Autorzy:
Frączak, Piotr Stanisław
Czajkowski, Andrzej Antoni
Powiązania:
https://bibliotekanauki.pl/articles/135956.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
obwód elektryczny szeregowy RLC
stany nieustalone w obwodach RLC
równania różnicowe
przekształcenie Laplace’a
symulacja numeryczna
MathCAD
PSpice
circuits
transient states
differential equations
Laplace transform
numerical
simulation
MathCAD program
PSpice program
Opis:
Wstęp i cel: W pracy przedstawiono opis i symulacje stanu nieustalonego w obwodzie elektrycznym szeregowym RLC. Pokazano zastosowanie metody równań różnicowych do rozwiązywania równania różniczkowego drugiego rzędu w programie MathCAD. Materiał i metody: W wyniku zastosowania metody równań różnicowych wskazano na możliwość przejścia od równań różniczkowych liniowych drugiego rzędu o stałych współczynnikach. Zastosowano metodę analityczno-numeryczną. W analizie numerycznej użyto program MathCAD. Wyniki: Otrzymano jednakowy kształt przebiegu krzywej prądu nieustalonego przy wyznaczaniu metodą równań różnicowych drugiego rzędu i równaniem różniczkowo-całkowym z wykorzystaniem przekształcenia odwrotnego Laplace’a. Ponadto otrzymane kształty prądów nieustalonych w rozpatrywanym obwodzie elektrycznym zweryfikowano w programie numerycznym PSpice Wniosek: Stosując zarówno metodę równań różnicowych i metodę przekształceń Laplace’a otrzymuje się jednakowe przebiegi prądu nieustalonego w funkcji czasu.
Introduction and aim: Some description and simulation of the transient in RLC circuit have been presented in this paper. Also has been shown the application of the Laplace transform to solve the differential equation. Material and methods: By using the Laplace transformation to the option of the transition from linear differential equations of the second order with constant coefficients to the algebraic equations. The analytical and numerical methods have been used in the considerations. In numerical analysis, a reversed Laplace transform was applied by using the MathCAD program. Results: It has been obtained the same curve shape of the transient current at the determination by the second-order differential equation (classical solution) and the different-integral equation by using the inverse Laplace transform. In addition, the obtained shapes of transients in the considered electrical circuit were verified in the numerical program PSpice Conclusion: By applying both the Laplace transform method and the analytical method, the same transient currents are obtained as a function of time.
Źródło:
Problemy Nauk Stosowanych; 2018, 9; 33-40
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of right triangles with given a difference of two sides length and the acute angle
Analityczno-numeryczne rozwiązywanie trójkątów prostokątnych gdzie dana jest różnica długości dwóch boków i kąt ostry
Autorzy:
Czajkowski, Andrzej Antoni
Oleszak, Wojciech Kazimierz
Snastin, Sławomir Wawrzyniec
Rewkowski, Lech Adam
Powiązania:
https://bibliotekanauki.pl/articles/136104.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
trigonometry
right triangle
acute angle
difference of two sides length of a triangle
numerical algorithm
MS Excel
MathCAD
Mathematica
trygonometria
trójkąt prostokątny
kąt ostry
różnica długości dwóch boków trójkąta
algorytm numeryczny
Opis:
Introduction and aims: The paper shows the analytical models of solving right triangles with appropriate discussion. For right triangles have been discussed six cases taking into account the acute angle and the difference of two sides length in the right triangle. The main aim of this paper is not only to create some analytical algorithms for solving right triangle, but also their implementation in programs MS-Excel, MathCAD and Mathematica. Material and methods: Elaboration of six analytical cases of solving right triangles has been made on the basis of the relevant trigonometric properties occurring in a right triangle. In the paper have been used some analytical and numerical methods by using MS-Excel, MathCAD and Mathematica programs. Results: As some results have been obtained numerical algorithms in the programs MS-Excel, MathCAD and Mathematica for six analytical cases of solving right triangles taking into ac-count the acute angle and the difference of two side length in the right triangle. Conclusion: Created numerical algorithms of solving the right triangles in the programs MS-Excel, MathCAD and Mathematica allow for faster significant performance calculations than the traditional way of using logarithms and logarithmic tables
Wstęp i cele: W pracy pokazano analityczne modele rozwiązywania trójkątów prostokątnych wraz z odpowiednią dyskusją. Dla trójkątów prostokątnych omówiono sześć przypadków z uwzględnieniem kąta ostrego oraz różnicy długości dwóch boków trójkąta. Głównym celem jest pracy jest nie tylko utworzenie algorytmów analitycznych rozwiązywania takich trójkątów lecz również ich implementacja w programach MS-Excel, MathCAD i Mathematica. Materiał i metody: Opracowanie sześciu analitycznych przypadków rozwiązywania trójkątów prostokątnych wykonano opierając się odpowiednich własnościach trygonometrycznych występujących w trójkącie prostokątnym. Zastosowano metodę analityczną i numeryczną wykorzystując programy MS-Excel, MathCAD i Mathematica. Wyniki: Otrzymano algorytmy numeryczne w programach MS-Excel, MathCAD i Mathematica dla sześciu analitycznych przypadków rozwiązywania trójkątów prostokątnych z uwzględnieniem kąta ostrego oraz różnicy długości dwóch boków trójkąta. Wniosek: Utworzone algorytmy numeryczne rozwiązywania trójkątów prostokątnych w programach MS-Excel, MathCAD oraz Mathematica, pozwalają na znaczne szybsze wykonanie obliczeń niż drogą tradycyjną z użyciem logarytmów i tablic logarytmicznych.
Źródło:
Problemy Nauk Stosowanych; 2018, 9; 5-20
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies