Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "recurrence formula" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Recurrence formula, differential compound and differential equations for Hermite polynomials
Związek rekurencyjny, zależność różniczkowa i równania różniczkowe dla wielomianów Hermitea
Autorzy:
Czajkowski, A. A.
Ignaczak, P.
Udała, R.
Powiązania:
https://bibliotekanauki.pl/articles/135846.pdf
Data publikacji:
2016
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
Hermite polynomials
recurrence formula
differential compound
differential equations
wielomiany Hermite'a
związek rekurencyjny
zależność różniczkowa
równania różniczkowe
Opis:
Introduction and aim: The paper presents a recurrence formula, some differential compounds and differential equation for Hermite polynomials. The aim of the discussion was to give some proofs of presented dependences. Material and methods: Selected material based on a recurrence formula, some differential compounds and differential equation has been obtained from the right literature. In presented proofs of theorems was used a deduction method. Results: Has been shown some proof of the theorem of the generating function for Hermite polynomials. It has been done the proof of recurrence formula between Hermite polynomials, some proof of differential compound and two differential equations for Hermite polynomials. Conclusion: The derivative of Hermite polynomial expressed by Hermite polynomials can be determined from the equation H’n(z) = 2nHn-1(z) for n = 1, 2, 3,...
Wstęp i cel: W pracy przedstawiono związek rekurencyjny, zależności różniczkowe i równanie różniczkowe dla wielomianów Hermite’a. Celem rozważań było przeprowadzenie dowodów omawianych własności. Materiał i metody: Materiał stanowiły wybrane zależności rekurencyjne i równanie różniczkowe uzyskane z literatury przedmiotu. W przeprowadzonych dowodach zastosowano metodę dedukcji. Wyniki: Pokazano dowód twierdzenia o funkcji tworzącej dla wielomianów Hermite’a. Przeprowadzono dowód związku rekurencyjnego między wielomianami Hermite’a, zależności różniczkowej oraz dwóch równań różniczkowych dla wielomianów Hermita. Wniosek: Pochodną wielomianu Hermite’a wyrażoną przez wielomiany Hermite’a można określić z równania H’n(z) = 2nHn-1(z) for n = 1, 2, 3,...
Źródło:
Problemy Nauk Stosowanych; 2016, 4; 65-72
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies