Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "navigation and timing" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Global Navigation Satellite Systems – Perspectives on Development and Threats to System Operation
Autorzy:
Czaplewski, K.
Goward, D.
Powiązania:
https://bibliotekanauki.pl/articles/117128.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
Global Positioning System (GPS)
satellite navigation
satellite navigation and timing technology
e-Loran
GLONASS
BeiDo
EGNOS
Opis:
The rapid development of satellite navigation and timing technologies and the broad availability of user equipment and applications has dramatically changed the world over the last 20 years. It took 38 years from the launch of the world’s first artificial satellite, Sputnik 1, (October 4, 1957) to the day NAVSTAR GPS became fully operational (July 17, 1995). In the next 20 years user equipment became widely available at the consumer level, and 10 global and regional satellite systems were partially or fully deployed. These highly precise signals provided free to the user have been incorporated by clever engineers into virtually every technology. At the same time interference with these signals (spoofing and jamming) have become a significant day to day problem in many societies and pose a significant threat to critical infrastructure. This paper provides information on the current status and development of navigation satellite systems based on data provided by the systems' administrators. It also provides information on Loran/eLoran, a system which many nations have selected as a complement and backup for satellite navigation systems.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2016, 10, 2; 183-192
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
SBAS/EGNOS enabled devices in maritime
Autorzy:
López, M.
Anton, V.
Powiązania:
https://bibliotekanauki.pl/articles/117186.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
accuracy
EGNOS-Enabled Navigation
AIS transponders
SGNSS
position
Navigation and Timing (PNT)
Satellite Based Augmentation System (SBAS)
EGNOS
Global Navigation Satellite System (GNSS)
Opis:
Nowadays, it is a fact that Global Navigation Satellite Systems (GNSS) have become the primary means of obtaining Position, Navigation and Timing (PNT) information at sea. Most of the ships in the world are equipped with GNSS receivers. And currently these users take advantage of different augmentation systems such as DGNSS or SBAS/EGNOS, as they provide an adequate answer, especially in terms of accuracy and integrity. To take advantage of this improved accuracy, direct access to EGNOS in vessels can be achieved through EGNOS-enabled navigation receivers and EGNOS-enabled AIS transponders. Therefore, the natural question is: Are those GNSS receivers SBAS (EGNOS) enabled? In most cases they are; SBAS is being used. This paper provides an analysis of the number of onboard devices, mainly devoted to navigation purposes and AIS transponders, which are SBAS compatible.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2018, 12, 1; 23-27
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Foundations of GNSS spoofing detection and mitigation with distributed GNSS SDR receiver
Autorzy:
Filić, M.
Powiązania:
https://bibliotekanauki.pl/articles/117522.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
positioning
Navigation and Timing (PNT)
cyber attack
Spoofing Detection and Mitigation (SDM)
GNSS SDM
spoofing
GNSS receiver
GNSS spoofing attack
Opis:
GNSS spoofing is an intentional and malicious action aimed at degrading and suppressing GNSS Positioning, Navigation, and Timing (PNT) services. Since it affects data and information segment of GNSS, it is considered a GNSS information (cyber‐) security attack. Considering a significant and powerful threat, GNSS spoofing should be treated seriously to avoid damage and liabilities resulting from disruptions of GNSS PNT services. Here the GNSS position estimation procedure is examined for potential vulnerabilities, and the nature of and motivation for GNSS spoofing attacks exloiting the vulnerabilities assessed. A novel GNSS Spoofing Detection and Mitigation (GNSS SDM) method is proposed within the established computational and communication infrastructure, that allows for successful overcoming and classification of GNSS spoofing attacks. Proposed method is applicable without requirements for core GNSS modification, and leaves majority of user equipment easily transferable to the GNSS spoofing‐free environment. Potential GNSS spoofing effects and GNSS anti‐spoofing opportunities in maritime sector were given a particular attention.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2018, 12, 4; 649-656
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reconstruction of geomagnetic event as observed in Northern Adriatic region and Its correlation with GPS single-frequency positioning deviations
Autorzy:
Brčić, D.
Ćelić, J.
Valčić, S.
Powiązania:
https://bibliotekanauki.pl/articles/116009.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
geomagnetic event
Northern Adriatic
Global Positioning System (GPS)
positioning deviations
positioning
Navigation and Timing (PNT)
Total Electron Content (TEC)
Classification and Regression Trees (CART)
Opis:
Space weather effects are generally recognized as causes of degradation of satellite positioning, navigation and timing (PNT) services. We analyze GPS position estimation error during a geomagnetic storm, focusing on manifestations of geomagnetic processes. The position estimation error was analyzed in terms of GPS coordinates’ deviations (latitude, longitude and height) from their reference values. The storm’s impact was studied in the Northern Adriatic region where GPS observables from two Global Navigation Satellite System (GNSS) reference stations were analysed. Geomagnetic indices were elaborated, comprising readings from interplanetary, magnetospheric and geomagnetic observatories. Total Electron Content (TEC) on both stations was computed using dual frequency GPS pseudorange observables. The experiment was to reconstruct the movement of geomagnetic disturbances entering the geospace, reaching the earth’s surface. The aim was to correlate possible space weather manifestation on satellite positioning performance in terms of positioning error. Regularities in changes in positioning deviations were identified with relation to influential indices. The research offered a possibility of experimental positioning deviations assessment as well as forecasting. Evaluation of generated rudimentary Classification and Regression Trees (CART) models showed that the risk of satellite positioning errors could be assessed and predicted considering absolutes, as well as changes in values of geomagnetic indices. During the research process, several activities emerged as preferable continuation of the work, with the aim of further development of predictive models and the complement of space weather scenarios and their consequences on navigational systems. Along with summarized results, they are outlined in the conclusion section.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2020, 14, 2; 349-357
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of tropospheric contribution to GPS positioning error during tropospheric cyclone Marcus in 2018
Autorzy:
Sikirica, N.
Horvat, M.
Špoljar, D.
Rumora, I.
Powiązania:
https://bibliotekanauki.pl/articles/116217.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
Global Positioning System (GPS)
cyclone Marcus
positioning
Navigation and Timing (PNT)
Port Darwin
NASA Earth Observatory
tropospheric correction
Software-Defined Radio (SDR)
Opis:
GNSS positioning performance assessment is essential for sustainable development of a growing number of GNSS-based technology and socio-economic applications. Case-studies of GNSS positioning performance in critical environments and applications scenarios reveals vulnerabilities of the GNSS Positioning, Navigation, and Timing (PNT) services, and suggest mitigation techniques and GNSS application risk containment. Here we address the case of GPS positioning performance during a devastating tropical cyclone Marcus that hit the greater area of the city of Darwin, Australia in 2018. We identified specific statistical properties of time series of tropospheric contribution to GPS northing, easting, and vertical positioning error that may contribute to understanding of tropospheric effects on GPS positioning performance during a massive weather deterioration in maritime and coastal areas, and analysed their adversarial effects on GNSS-based maritime applications.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2020, 14, 2; 343-348
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
GNSS positioning error change-point detection in GNSS Positioning Performance Modelling
Autorzy:
Filić, M.
Filjar, R.
Powiązania:
https://bibliotekanauki.pl/articles/117469.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Global Navigation Satellite System (GNSS)
positioning
Navigation and Timing (PNT)
GNSS Positioning Performance Modelling
GNSS Positioning Error Change-point Detection
GNSS Positioning Performance
GNSS Resilience
GNSS Utilisation Risk Mitigation
GNSS Positioning Performance Degradation
Opis:
Provision of uninterrupted and robust Positioning, Navigation, and Timing (PNT) services is essential task of Global Navigation Satellite Systems (GNSS) as an enabling technology for numerous technology and socio-economic applications, a cornerstone of the modern civilisation, a public goods, and an essential component of a national infrastructure. GNSS resilience may be accomplished only with complete understanding of the causes of GNSS positioning performance disruptions and degradations, presented in a form of applications- and scenarios-related models. Here the application of change-point detection methods is proposed and demonstrated in a selected scenario of a fast-developing ionospheric storm’s impact on GNSS positioning performance, as a novel contribution to forecasting GNSS positioning performance model development and GNSS utilisation risk mitigation.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 575-579
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies