Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "degree theory" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Describing Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree 6 or 7
Autorzy:
Batueva, Ts.Ch-D.
Borodin, O.V.
Ivanova, A.O.
Nikiforov, D.V.
Powiązania:
https://bibliotekanauki.pl/articles/32361718.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graph
structural properties
3-polytope
5-star
neighborhood
Opis:
In 1940, in attempts to solve the Four Color Problem, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P5 of 3-polytopes with minimum degree 5. This description depends on 32 main parameters. (6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11), (5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17), (5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6, ∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11), (5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13) Not many precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in P5. In 2018, Borodin, Ivanova, Kazak proved that every forbidding vertices of degree from 7 to 11 results in a tight description (5, 5, 6, 6, ∞), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6). Recently, Borodin, Ivanova, and Kazak proved every 3-polytope in P5 with no vertices of degrees 6, 7, and 8 has a 5-vertex whose neighborhood is majorized by one of the sequences (5, 5, 5, 5, ∞) and (5, 5, 10, 5, 12), which is tight and improves a corresponding description (5, 5, 5, 5, ∞), (5, 5, 9, 5, 17), (5, 5, 10, 5, 14), (5, 5, 11, 5, 13) that follows from the Lebesgue Theorem. The purpose of this paper is to prove that every 3-polytope with minimum degree 5 and no vertices of degree 6 or 7 has a 5-vertex whose neighborhood is majorized by one of the ordered sequences (5, 5, 5, 5, ∞), (5, 5, 8, 5, 14), or (5, 5, 10, 5, 12).
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 535-548
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Low 5-Stars at 5-Vertices in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree from 7 to 9
Autorzy:
Borodin, Oleg V.
Bykov, Mikhail A.
Ivanova, Anna O.
Powiązania:
https://bibliotekanauki.pl/articles/31348144.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar map
planar graph
3-polytope
structural properties
5-star
weight
height
Opis:
In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class $P_5$ of 3-polytopes with minimum degree 5. Given a 3-polytope $P$, by $h_5(P)$ we denote the minimum of the maximum degrees (height) of the neighborhoods of 5-vertices (minor 5-stars) in $P$. Recently, Borodin, Ivanova and Jensen showed that if a polytope $P$ in $P_5$ is allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of degree at most 6, called a (5, 5, 6, 6, ∞)-vertex, then $h_5(P)$ can be arbitrarily large. Therefore, we consider the subclass \(P_5^\ast\) of 3-polytopes in $P_5$ that avoid (5, 5, 6, 6, ∞)-vertices. For each $P^\ast$ in $P_5^\ast$ without vertices of degree from 7 to 9, it follows from Lebesgue’s Theorem that $h_5(P^\ast) ≤ 17$. Recently, this bound was lowered by Borodin, Ivanova, and Kazak to the sharp bound $h_5(P^\ast) ≤ 15$ assuming the absence of vertices of degree from 7 to 11 in $P^\ast$. In this note, we extend the bound $h_5(P^\ast) ≤ 15$ to all $P^\ast$s without vertices of degree from 7 to 9.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 1025-1033
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Describing Neighborhoods of 5-Vertices in 3-Polytopes with Minimum Degree 5 and Without Vertices of Degrees from 7 to 11
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Kazak, Olesya N.
Powiązania:
https://bibliotekanauki.pl/articles/31342287.pdf
Data publikacji:
2018-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar graph
structure properties
3-polytope
neighborhood
Opis:
In 1940, Lebesgue proved that every 3-polytope contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: (6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11), (5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17), (5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), (5, 5, 6, 6, ∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11), (5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13). In this paper we prove that every 3-polytope without vertices of degree from 7 to 11 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: (5, 5, 6, 6, ∞), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6), where all parameters are tight.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 3; 615-625
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Light Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No 6-Vertices
Autorzy:
Borodin, Oleg V.
Ivanova, Anna O.
Vasil’eva, Ekaterina I.
Powiązania:
https://bibliotekanauki.pl/articles/31348169.pdf
Data publikacji:
2020-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
planar map
planar graph
3-polytope
structural properties
5-star
weight
height
Opis:
In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P5 of 3-polytopes with minimum degree 5. Given a 3-polytope P, by w(P) denote the minimum of the degree-sum (weight) of the neighborhoods of 5-vertices (minor 5-stars) in P. In 1996, Jendrol’ and Madaras showed that if a polytope P in P5 is allowed to have a 5-vertex adjacent to four 5-vertices, then w(P) can be arbitrarily large. For each P in P5 without vertices of degree 6 and 5-vertices adjacent to four 5-vertices, it follows from Lebesgue’s Theorem that w(P) ≤ 68. Recently, this bound was lowered to w(P) ≤ 55 by Borodin, Ivanova, and Jensen and then to w(P) ≤ 51 by Borodin and Ivanova. In this note, we prove that every such polytope P satisfies w(P) ≤ 44, which bound is sharp.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 4; 985-994
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies