- Tytuł:
- Classification of high resolution satellite images using improved U-Net
- Autorzy:
-
Wang, Yong
Zhang, Dongfang
Dai, Guangming - Powiązania:
- https://bibliotekanauki.pl/articles/331235.pdf
- Data publikacji:
- 2020
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
satellite image classification
deep learning
U-net
spatial pyramid pooling
zdjęcia satelitarne
uczenie głębokie - Opis:
- Satellite image classification is essential for many socio-economic and environmental applications of geographic information systems, including urban and regional planning, conservation and management of natural resources, etc. In this paper, we propose a deep learning architecture to perform the pixel-level understanding of high spatial resolution satellite images and apply it to image classification tasks. Specifically, we augment the spatial pyramid pooling module with image-level features encoding the global context, and integrate it into the U-Net structure. The proposed model solves the problem consisting in the fact that U-Net tends to lose object boundaries after multiple pooling operations. In our experiments, two public datasets are used to assess the performance of the proposed model. Comparison with the results from the published algorithms demonstrates the effectiveness of our approach.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 399-413
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki