Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Radial-Basis Function Network" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Comparison of prototype selection algorithms used in construction of neural networks learned by SVD
Autorzy:
Jankowski, N.
Powiązania:
https://bibliotekanauki.pl/articles/330020.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
radial basis function network
extreme learning machine
kernel method
prototype selection
machine learning
k nearest neighbours
radialna funkcja bazowa
metoda jądrowa
uczenie maszynowe
metoda k najbliższych sąsiadów
Opis:
Radial basis function networks (RBFNs) or extreme learning machines (ELMs) can be seen as linear combinations of kernel functions (hidden neurons). Kernels can be constructed in random processes like in ELMs, or the positions of kernels can be initialized by a random subset of training vectors, or kernels can be constructed in a (sub-)learning process (sometimes by k-means, for example). We found that kernels constructed using prototype selection algorithms provide very accurate and stable solutions. What is more, prototype selection algorithms automatically choose not only the placement of prototypes, but also their number. Thanks to this advantage, it is no longer necessary to estimate the number of kernels with time-consuming multiple train-test procedures. The best results of learning can be obtained by pseudo-inverse learning with a singular value decomposition (SVD) algorithm. The article presents a comparison of several prototype selection algorithms co-working with singular value decomposition-based learning. The presented comparison clearly shows that the combination of prototype selection and SVD learning of a neural network is significantly better than a random selection of kernels for the RBFN or the ELM, the support vector machine or the kNN. Moreover, the presented learning scheme requires no parameters except for the width of the Gaussian kernel.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 719-733
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fast neural network learning algorithm with approximate singular value decomposition
Autorzy:
Jankowski, Norbert
Linowiecki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/330870.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Moore–Penrose pseudoinverse
radial basis function network
extreme learning machine
kernel method
machine learning
singular value decomposition
deep extreme learning
principal component analysis
pseudoodwrotność Moore–Penrose
radialna funkcja bazowa
maszyna uczenia ekstremalnego
uczenie maszynowe
analiza składników głównych
Opis:
The learning of neural networks is becoming more and more important. Researchers have constructed dozens of learning algorithms, but it is still necessary to develop faster, more flexible, or more accurate learning algorithms. With fast learning we can examine more learning scenarios for a given problem, especially in the case of meta-learning. In this article we focus on the construction of a much faster learning algorithm and its modifications, especially for nonlinear versions of neural networks. The main idea of this algorithm lies in the usage of fast approximation of the Moore–Penrose pseudo-inverse matrix. The complexity of the original singular value decomposition algorithm is O(mn2). We consider algorithms with a complexity of O(mnl), where l < n and l is often significantly smaller than n. Such learning algorithms can be applied to the learning of radial basis function networks, extreme learning machines or deep ELMs, principal component analysis or even missing data imputation.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 581-594
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults
Autorzy:
Kantue, Paulin
Pedro, Jimoh O.
Powiązania:
https://bibliotekanauki.pl/articles/2172129.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault tolerant control
quadrocopter
incipient actuator fault
radial basis function
neural network
sterowanie tolerujące uszkodzenia
kwadrokopter
radialna funkcja bazowa
sieć neuronowa
Opis:
An integrated approach to the fault-tolerant control (FTC) of a quadcopter unmanned aerial vehicle (UAV) with incipient actuator faults is presented. The framework is comprised of a radial basis function neural network (RBFNN) fault detection and diagnosis (FDD) module and a reconfigurable flight controller (RFC) based on the extremum seeking control approach. The dynamics of a quadcopter subject to incipient actuator faults are estimated using a nonlinear identification method comprising a continuous forward algorithm (CFA) and a modified golden section search (GSS) one. A time-difference-of-arrival (TDOA) method and the post-fault system estimates are used within the FDD module to compute the fault location and fault magnitude. The impact of bi-directional uncertainty and FDD detection time on the overall FTC performance and system recovery is assessed by simulating a quadcopter UAV during a trajectory tracking mission and is found to be robust against incipient actuator faults during straight and level flight and tight turns.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 601--617
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-adaptive cooperative control for high-order nonlinear multi-agent systems with uncertainties
Autorzy:
Peng, Cheng
Zhang, Anguo
Li, Junyu
Powiązania:
https://bibliotekanauki.pl/articles/2055174.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multiagent system
radial basis function
RBF neural network
sliding mode control
cooperative control
system wieloagentowy
radialna funkcja bazowa
sieć neuronowa RBF
sterowanie ślizgowe
Opis:
The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demonstrate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 635--645
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies