Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "portfolio optimization" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Trade-Off Guided Search for Approximate Pareto Optimal Portfolios
Autorzy:
Juszczuk, Przemysław
Kaliszewski, Ignacy
Miroforidis, Janusz
Powiązania:
https://bibliotekanauki.pl/articles/578497.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Pareto front approximation
Portfolio optimization
Aproksymacja frontu Pareto
Optymalizacja portfela
Opis:
In this paper, we attempt to represent the Pareto Front in the Markowitz mean-variance model by two-sided discrete approximations. We discuss the possibility of using such approximations for portfolio selection. The potential of the approach is illustrated by the results of preliminary numerical experiments.
Źródło:
Multiple Criteria Decision Making; 2017, 12; 49-59
2084-1531
Pojawia się w:
Multiple Criteria Decision Making
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Review of Selected Methods for Portfolio Optimization of and IrreversibleInvestment in Power Generation Assets under Uncertainty
Przegląd wybranych metod optymalizacji portfela i podejmowania nieodwracalnych decyzji w sektorze energetycznym w warunkach niepewności
Autorzy:
Glensk, Barbara
Madlener, Reinhard
Powiązania:
https://bibliotekanauki.pl/articles/591976.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Fuzzy set theory
Portfolio optimization
Real options analysis
Analiza opcji realnych
Optymalizacja portfela
Teoria zbiorów rozmytych
Opis:
In this paper, we present some examples to illustrate the use of selected financial methods for the portfolio optimization of power generation assets. We start with classical MV theory, followed by dynamic variants to MV portfolio optimization, and eventually how fuzzy set theory can be used in portfolio optimization of power generation assets. In light of the ongoing liberalization process of the energy markets, and the risks and uncertainties created by rising shares of renewable electricity in the spot market, we present real option model specifications that can be used by energy companies to run these assets profitably and to make rational new investments in conventional power plants. Such models can help to determine the optimal timing to invest (or disinvest) in power plants, and can thus be powerful and useful tools for decision-makers.
W niniejszym artykule zostały zaprezentowane przykłady zastosowań wybranych metod optymalizacyjnych portfeli na rynku energetycznym, takich jak klasyczna teoria portfela Markowitza, dynamiczne ujęcie optymalizacji portfela czy wykorzystanie teorii zbiorów rozmytych do tworzenia portfeli. W świetle liberalizacji rynku energetycznego, jak również wzrastającego ryzyka związanego z coraz większym udziałem odnawialnych źródeł energii w procesie generowania energii, autorzy artykułu proponują także zastosowanie teorii opcji realnych w procesie decyzyjnym. Modele opcji realnych pozwalają, między innymi, na określenie optymalnego terminu realizacji inwestycji (czy też dezinwestycji) i mogą służyć jako alternatywna metoda w procesie podejmowania decyzji.
Źródło:
Studia Ekonomiczne; 2015, 247; 20-42
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie rozkładu najgorszego przypadku do konstrukcji stabilnego portfela inwestycji finansowych
Construction of a Stable Portfolio of Financial Investments by Means of the Worst-Case Distribution
Autorzy:
Krzemienowski, Adam
Powiązania:
https://bibliotekanauki.pl/articles/593616.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Optymalizacja
Portfel inwestycji
Stabilność
Investment portfolio
Optimization
Stability
Opis:
Podstawą konstrukcji portfela inwestycji finansowych jest określenie udziałów poszczególnych aktywów (instrumentów inwestycyjnych). Z matematycznego punktu widzenia zagadnienie to sprowadza się do optymalizacji struktury aktywów portfela w warunkach ryzyka. Jest to problem optymalizacyjny typowo rozwiązywany za pomocą metody Markowitza, która maksymalizuje średnią stopę zwrotu przy minimalizacji miary ryzyka. Praca przedstawia koncepcję rozkładu najgorszego przypadku stóp zwrotu aktywów finansowych, który wykorzystany w modelu Markowitza pozwala poza próbą otrzymać wyniki nie gorsze niż w próbie w sensie rozważanych wskaźników jakości. Rozkład najgorszego przypadku jest definiowany w oparciu o relację dominacji stochastycznej pierwszego rzędu. W pracy posłużono się metodą kopuł. Proponowane podejście zostanie zilustrowane wynikami analizy eksperymentalnej dla wybranych akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie.
The basis of the portfolio selection is to determine the share of each financial asset. From a mathematical point of view, this issue boils down to portfolio optimization. This is a typical optimization problem solved by the Markowitz method, which maximizes the expected rate of return and minimizes risk defined as the variance. The assumptions of the Markowitz model should ensure that the optimal portfolios are stable over time, i.e., they should be characterized by the absence of fluctuations in their shares, or in other words, the risk and the expected return should correspond to those estimated from the historical data. In practice, these assumptions are not met. To solve this problem, we define a certain time-invariant distribution bounding portfolio time series of returns from below. This distribution is based on the relation of stochastic dominance and is called the worst-case distribution. We test the validity of this approach by conducting computational experiments on the real-life financial data from the Warsaw Stock Exchange.
Źródło:
Studia Ekonomiczne; 2015, 248; 151-160
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sampling methods for investment portfolio formulation procedure at increased market volatility
Autorzy:
Dzicher, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/2027253.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Investment decisions
Optimization techniques
Portfolio selection
Statistical simulation methods
Opis:
Aim/purpose–In this paper, a market volatility-robust portfolio composition frame-work under the modified Markowitz’s approach with the use of sampling methods is developed in order to improve the allocation efficiency for a portfolio of financial instruments formulation procedure at an increased market volatility.Design/methodology/approach–In order to overcome the risk of not receiving an optimal solution to the portfolio optimization (suboptimal outcomes of attribution of weights in allocation procedures) the developed model, first, implements the rationale that financial markets largely feature two states, i.e., quiescent (non-crisis; low market volatility) periods that are occasionally interspersed with stress (crisis; high market volatility) periods and, second, relies on many input samples of rates of return, either from an empirical distribution or a theoretical distribution (mitigating estimation risk). All computational results are reported for publicly available historical daily data sets on selected Polish blue-chip securities. Findings–Not only did the presented method produce more diversified allocation, but also successfully minimized the unfavorable effects of increased market volatility by providing less risky portfolios in comparison to Newton’s method, typically used for optimization under portfolio theory. Research implications/limitations–The research emphasized that in order to get a more diversified investment portfolio it is crucial to outdo the limitations of a single sample approach (utilized in Markowitz’s model) which may on some occasions be statistically biased. Thus it was proved that sampling methods allow to obtain a less concentrated and volatile allocation which contributes the investment decision-making. However, the current research focused solely on publicly available input data of particular securities. In this manner, an additional analysis can be prepared for other jurisdictions and asset classes. There can also be considered a use of other than variance risk measures.Originality/value/contribution–The suggested framework contributes to existing methods a wide array of quantitative data analysis and simulation tools for composing an unique approach that directly addresses the task of minimizing the adverse implications of increased market volatility that, in consequence, pertains to knowledgeable attributing of investment portfolio proportions of either individual or institutional investors. The prepared method is also proved to hold demanded computational quality and, importantly, the capacity for further development.
Źródło:
Journal of Economics and Management; 2021, 43; 70-89
1732-1948
Pojawia się w:
Journal of Economics and Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalny portfel inwestycyjny z kryterium maksymalnej skośności
Optimal Investment Portfolio for Skewness Maximization Criteria
Autorzy:
Kopańska-Bródka, Donata
Powiązania:
https://bibliotekanauki.pl/articles/590156.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza portfelowa
Optymalizacja
Optymalizacja wielokryterialna
Portfel inwestycyjny
Teoria portfelowa Markowitza
Investment portfolio
Markowitz portfolio theory
Multiple criteria optimization
Optimalization
Portfolio analysis
Opis:
Celem artykułu jest przedstawienie problemu wyboru optymalnego portfela akcji w sytuacji, kiedy preferencje inwestora odnoszą się do wartości oczekiwanej, wariancji i skośności rozkładu stopy zwrotu portfela. Zadanie zostaje sformułowane jako zagadnienie wielokryterialne, w którym trzeci moment centralny rozkładu przyjmowany jest jako miara skośności. W artykule dyskutowane są różne podejścia do rozwiązania problemu wielokryterialnego oraz trudności związane z technikami obliczeniowymi. W szczególności przedstawiono problemy związane z zastosowaniem metod programowania celowego do określenia struktury optymalnego portfela inwestycyjnego.
In this paper we analyze the portfolio optimization problem when investor preferences relate to the expected value, variance and skewness of distribution of portfolio return. The third central moment of the distribution is taken as a measure of skewness. Portfolio optimization using higher moments is a more involved problem than the mean-variance approach. The problem is formulated as multi-objective programming problem there the investor tries to maximize expected return and skewness, while simultaneously minimizing variance. To solve such portfolio problem, we can use specific approaches and techniques. We take especially account by utilizing Goal Programming to determine the optimal structure of the investment portfolio and incorporate investors preferences for higher moments.
Źródło:
Studia Ekonomiczne; 2014, 208; 46-58
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies