Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "anomalia" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Związki między temperaturą wody w energoaktywnej strefie Morza Bellingshausena a temperaturą powietrza na Stacji Arctowskiego
Correlations between the water temperature in energy-active zone of the Bellingshausen Sea and the air temperature at the Arctowski Station
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260963.pdf
Data publikacji:
1998
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura wody
temperatura powietrza
Szetlandy Południowe
Stacja Arctowskiego
anomalia TPO
water temperature
air temperature
Arctowski Station
South Shetland
SST anomalies
Opis:
The main task of this paper is to explain if there is an energy-active sea zone in the vicinity of the South Shetland Islands and the Antarctic Peninsula which controls changes in atmospheric circulation in this area. The analysis made by use of the data comprising information about mean monthly sea surface temperatures (later SST) and SST anomalies in 2 x 2° grids - GEDEX and data about mean monthly air temperatures taken at the Arctowski Station (Meteorological Yearbooks of the Arctowski Station). Common data spanned the period from January 1982 to April 1992. The first stage of this work was to find so called .active grids", i.e. grids of bigger influence of ocean surface on thermic regime of distant areas. In order to do that an analysis of changes in SST in parts of the South Ocean comprising the Bellingshausen Sea, the Drake Strait, the Scotia Sea and the boundary between the Scotia Sea and the Weddell Sea was carried out. The analysis resulted in a conclusion that three grids situated 80oW: 56°,60° and 64°S show the larger relation with the flow of air temperature at the Arctowski Station. There are synchronic and asynchronic correlations between SST anomalies and the air temperature in nominated grids of the Arctowski Station. The results of analysis of synchronic correlations have been presented in table l. Asynchronic correlations are of complicated nature and distributions. Most numerous simple correlations were reported to occur between the temperature at the Arctowski Station and SST Anomalies in grids [80°W, 64°S]. The largest correlations are those with anomalies occurring in January, February and March. They can be observed in the air temperature with 11-13 months delay. The combined correlations are multiple correlations between regression equation of synchronically occurring anomalies (AN) in those grids and the air temperature at the Arctowski Station (ARC) in consecutive months (1, 2, 3, ..., n, n + 1, n + 2); ARC_n = a + b AN[80.56]_n + c AN[80.60]_n + d AN[80.64]_n. Table 2 contains set of multiple correlation coefficients and those which are likely to be significant have been marked. It has been stated that SST anomalies at 800W in March correlate with monthly air temperatures at the end of summer the following year (February and March) at the Arctowski Station and with temperatures of the early and midwinter of the following year (May, June, July).The variation in SST anomalies in March explains 88% - 69% of variance of variation in the air temperature in June and in July of the following year at the Arctowski Station (fig. l). The response of the air temperature to the occurrence of SST anomalies in October at 800W is much faster - from one to five months. Large correlation between the air temperatures at the Arctowski Station and SST anomalies can be observed already in December of the same year and in January, March and April in the following year (fig. 2). The above stated facts lead to conclusion that the distribution of SST does not influence the flow of the air temperature in a continuous way. Future variations in the air temperature are influenced by the states of thermal field of water measured at crucial moments (the end of summer and the end of winter). They are the states, which later on are slowly modified by processes of radiation in-and off flow, wind chilling and dynamic processes active in the ocean (heat advection following the mass advection). Thus a thesis can be stated that the SST anomalies occurring in grids 56°, 600 and 64°S. 800W may serve as predictive values to work out long term prognosis of the air temperature at the Arctowski Station. These prognosis can be divided into "early" prognosis with 2-6 months' advance (equations 1-4) and "distant" prognosis with 11-18 months' advance (equations 5-8). The above mentioned equations explain about 91% to 52% of variations in the mean monthly air temperature at the Arctowski Station. The presented facts indicate that there really is energy-active zone in the Bellingshausen Sea. Chapter 6 in 4 points shows how the hypothetical mechanism works. It can be understood and explained in a similar way as in case of the Labrador Sea and the New Foundland region (Marsz 1997). The analysis of synchronic statistical correlations between the air temperature at the Arctowski Station and the distribution of SST anomalies at 80°W indicates, among others, the presence of the mechanism described in Chapter 6. Such correlations have been analysed and discussed in a detailed way for April (fig. 3, equations 9 and l0) and for July (fig. 4, equation 11).
Źródło:
Problemy Klimatologii Polarnej; 1998, 8; 25-46
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anomalnie zimne miesiące na Alasce (1951-2010)
Anomalously cold months in Alaska (1951-2010)
Autorzy:
Sulikowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/261029.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
anomalia termiczna
anomalnie zimny miesiąc
Dekadowa Oscylacja Pacyficzna
Alaska
odchylenie standardowe
thermal anomaly
anomalously cold month
Pacific Decadal Oscillation
standard deviation
Opis:
Opracowanie oparto na średnich miesięcznych wartościach temperatury powietrza z 15 stacji meteorologicznych na Alasce w okresie 1951-2010. Za anomalnie zimne uznano te miesiące, w których średnia temperatura powietrza była niższa od średniej 60-letniej co najmniej o 2 odchylenia standardowe. Zbadano częstość występowania, zasięg przestrzenny i przebieg roczny anomalnie zimnych miesięcy (AZM) oraz przedstawiono ich charakterystyki termiczne. Ponadto przeprowadzono próbę powiązania występowania AZM z Dekadową Oscylacją Pacyficzną (PDO). W rozpatrywanym okresie stwierdzono 285 AZM. Obejmowały one od 1 do 11 stacji równocześnie. Wielkości anomalii mieściły się w zakresie od 1,1°C do 17,0°C. Najwięcej AZM wystąpiło w 20-leciu 1961-1980, a najmniej w okresie 2001-2010. Zaobserwowano znaczny spadek częstości AZM po zmianie fazy PDO z negatywnej na pozytywną w 1976 roku i stwierdzono, że zdecydowana większość AZM (79%) wystąpiła podczas ujemnych wartości tego wskaźnika, co wskazuje na jego duże znaczenie w kształtowaniu warunków termicznych na Alasce.
The aim of this paper is to present anomalously cold months (ACM) in Alaska during the period of 1951-2010 and to refine the linkage of Pacific Decadal Oscillation (PDO) with their occurrence. The study is based on average monthly temperature data recorded during the period of 1951-2010 from 15 weather stations located in Alaska. The anomalous month was defined as having an average\ temperature different from the long-term mean (1951-2010) by at least 2 standard deviations. There were 285 ACMs observed. They appeared most often in Cold Bay (25) and stations located in central Alaska (Fairbanks, Big Delta, Northway; 22-24). Most frequently they occurred from February to April and in November and December. ACMs occurred at up to 11 weather stations simultaneously, however the majority of them was observed at a single station or at two or three neighboring stations (of the stations included in the study). The scale of the anomaly ranged from 1.1°C to 17.0°C (Northway, February 1979). There were 12 two- to four-month series of ACMs. The highest number of ACMs occurred during the decade 1961–1970 and the lowest in 2001-2010. There is a clearly visible decrease in the frequency of ACMs after the PDO shift from dominantly negative to positive values in 1976. The great majority of ACMs (79%) occurred during the negative values of the PDO index. The correlation coefficient of average monthly temperatures and PDO values was highest in the southeastern part of Alaska (up to 0.75) and from November to May. It was the lowest in the arctic part of the state and from June to September. Monthly temperature anomalies in Alaska are mainly driven by the atmospheric circulation patterns. ACMs coincide with the advection of cold air masses from the north. Also local effects, which include radiative cooling, temperature inversions and local katabatic winds contribute greatly to the occurrence of ACMs in Alaska.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 139-151
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anomalie termiczne na Islandii (1951-2010)
The thermal anomalies in Iceland (1951-2010)
Autorzy:
Mitka, K.
Powiązania:
https://bibliotekanauki.pl/articles/260848.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
anomalia termiczna
miesiąc anomalnie ciepły
miesiąc anomalnie zimny
odchylenie standardowe
Islandia
thermal anomaly
anomalously warm month
anomalously cold month
Iceland
standard deviation
Opis:
Opracowanie wykonano na podstawie średnich miesięcznych wartości temperatury powietrza z 10 stacji meteorologicznych na Islandii z okresu 1951-2010. Za miesiące anomalnie zimne (AZM) lub ciepłe (ACM) przyjęto takie, w których temperatura powietrza różniła się od średniej wieloletniej przynajmniej o 2 odchylenia standardowe. Przeanalizowano przebieg roczny, częstość, rozkład przestrzenny i wielkość anomalii. W analizowanym wieloleciu stwierdzono wystąpienie 143 anomalnie zimnych i 133 anomalnie ciepłych miesięcy. Najczęściej występowały one na pojedynczych stacjach, ale były też takie anomalie, które pojawiły się na 8-9 stacjach jednocześnie. Wielkość anomalii obu kategorii mieściła się w zakresie 1,1-8,0°C. Najwięcej AZM wystąpiło w dekadzie 1971-1980, a ACM w latach 2001-2010.
The aim of this paper is to present anomalously cold (ACM) and warm (AWM) months in Iceland during the period of 1951-2010. The study was based on average monthly temperature data from 10 meteorological stations located in Iceland recorded during the period 1951-2010. The anomalously cold or warm months was defined as having an average temperature different from long-term average by at least 2 standard deviations. There were found 143 ACM and 133 AWM in Iceland. Exceptionally cold months appeared in 47 and exceptionally warm months in 58 from 720 examined months. Both positive and negative anomalies mostly occur at single stations (20 ACM and AWM 33), but there were examples of anomalies of range 8 and 9 stations. ACM were a bit more frequent than AWM. Moreover, ACM had a greater range - were more frequent at the same time on several stations (3 times at 8 and also 9 of them). In case of AWM there were 2 anomalies at 8 and 1 anomaly on 9 the same stations. Extremely cold months appeared most often in north-eastern part of Iceland (Raufarhöfn, Dalatangi) and also stood out in the amount of deviation from the mean monthly air temperature (6 ACM within the range -7,1 to -7,3°C). Long-lasting thermal anomaly was not varied. Exceptionally warm months occurred more often during the summer and then have a longer range at that time. ACM and AWM formed only a 2-month sequences. The number of ACM and AWM per month (respectively average 14 and 13 per month) were diverse. Anomalously cold months ranged from 5 (January and September) to 22 (October), and anomalously warm months from 2 (January) to 19 (August). Neither ACM and AWM showed no regular pattern of annual process. Large-scale atmospheric circulation does not fully explain the occurrence of thermal anomalies in Iceland. The values of the correlation coefficient between the average monthly air temperature, and the values of the North Atlantic Oscillation index were low and very varied. Advection of cold air masses from north and north-west (Arctic) favors to the incidence of ACM (Einarsson 1976, Twardosz 2013).
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 97-108
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Niezwykłe anomalie termiczne w strefie klimatu podbiegunowego obszaru atlantycko-europejskiego
Exceptional thermal anomalies in the Atlantic-European area of the sub-polar zone
Autorzy:
Twardosz, R.
Kossowska-Cezak, U.
Powiązania:
https://bibliotekanauki.pl/articles/972209.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
klimat podbiegunowy
anomalia termiczna
miesiąc niezwykle zimny
miesiąc niezwykle ciepły
Arktyka Atlantycka
subpolar climate
thermal anomaly
exceptionally cold month
exceptionally warm month
Opis:
Opracowanie oparto na wartościach średnich miesięcznych temperatury powietrza z 17 stacji meteorologicznych od Wybrzeży Grenlandii do Nowej Ziemi z 60-lecia 1951-2010. Do badań przyjęto stacje, w których temperatura średnia wieloletnia w najcieplejszym miesiącu, tj. w lipcu, nie przekracza 12°C. Za anomalne uznano te miesiące, w których temperatura różniła się od średniej wieloletniej przynajmniej o 2 odchylenia standardowe. Zbadano przebieg roczny występowania miesięcy o anomalii ujemnej (niezwykle zimnych) i dodatniej (niezwykle ciepłych) oraz tendencji zmian ich częstości w 60-leciu, a także rozkład przestrzenny najbardziej rozległych anomalii. Stwierdzono, ze w ciągu 60 lat były 132 miesiące niezwykle zimne i 127 miesięcy niezwykle ciepłych. Najwięcej miesięcy niezwykle zimnych (41) i najmniej niezwykle ciepłych (11) było w 10-leciu 1961-1970; najmniej miesięcy niezwykle zimnych (3) i najwięcej niezwykle ciepłych (57) było w 10-leciu 2001-2010. Wzrost częstości miesięcy ciepłych zaznaczył się głównie w zachodniej części badanego obszaru.
The study is based on average monthly temperature data from 17 weather stations located along a belt between the Greenland coast and the island of Novaya Zemlya and recorded during the period 1951-2010. The stations were selected to meet the criterion of a maximum long-term average temperature of 12°C for the warmest month, i.e. July. The anomalous month was defined as having an average temperature different from the long-term average by at least 2 standard deviations. Both positive (exceptionally warm) and negative (exceptionally cold) anomalies were analysed, as well as their trends of frequency change during the study period and the spatial distribution of the cases with the largest geographical spread. However, a majority of the anomalous months of each type were only recorded at single stations or at two neighbouring stations (of those included in the study), which would suggest spatially limited or even strictly local factors effecting such an exceptional temperature increase or drop. Exceptionally cold months (ECM) were more frequent than their warm counterparts (EWM), had a greater spatial extent and the scale of their anomaly tended to be larger (i.e. down to –12°C compared to maximum +10°C for EWMs). ECMs were more often linked in two-month or three-month series (31 such series), while multiple EWM series were fewer (18), but longer, lasting up to 6 months. The highest numbers of anomalous months were recorded during the decade 1961-1970 (41 ECM and 11 EWM) and the lowest numbers in the decade 2001-2010 (3 ECM and 57 EWM). The increase in the warm month activity was largely limited to the western end of the study area. The annual pattern of anomalous months was far more defined in the eastern section of the area, along the coast of a vast continent, than in the maritime west. This clear definition of the eastern pattern was mainly down to the frequency of ECMs and their large spatial extent. In the western section of the area the distribution of ECMs and EWMs is more balanced with a recent maximum of EWM frequency located in Iceland. ECMs coincide with the advection of cold air masses from the north and northeast, while EWMs tend to occur in association with southern warm advections.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 93-105
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies