Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Search Algorithm" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Genetic algorithm combined with a local search method for identifying susceptibility genes
Autorzy:
Yang, C -H.
Moi, S. -H.
Lin, Y. -D.
Chuang, L. -Y.
Powiązania:
https://bibliotekanauki.pl/articles/91586.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
genetic algorithms
identifying susceptibility genes
local search algorithm
Opis:
Detecting genetic association models between single nucleotide polymorphisms (SNPs) in various disease-related genes can help to understand susceptibility to disease. Statistical tools have been widely used to detect significant genetic association models, according to their related statistical values, including odds ratio (OR), chi-square test (χ2), p-value, etc. However, the high number of computations entailed in such operations may limit the capacity of such statistical tools to detect high-order genetic associations. In this study, we propose lsGA algorithm, a genetic algorithm based on local search method, to detect significant genetic association models amongst large numbers of SNP combinations. We used two disease models to simulate the large data sets considering the minor allele frequency (MAF), number of SNPs, and number of samples. The three-order epistasis models were evaluated by chi-square test (χ2) to evaluate the significance (P-value < 0.05). Analysis results showed that lsGA provided higher chi-square test values than that of GA. Simple linear regression indicated that lsGA provides a significant advantage over GA, providing the highest β values and significant p-value.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 3; 203-212
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cuckoo search algorithm for optimal placement and sizing of static var compensator in large-scale power systems
Autorzy:
Nguyen, K. P.
Fujita, G.
Dieu, V. N.
Powiązania:
https://bibliotekanauki.pl/articles/91782.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Cuckoo search algorithm
optimal placement and sizing
shunt VAR compensator
optimal power flow
FACTS
Opis:
This paper presents an application of Cuckoo search algorithm to determine optimal location and sizing of Static VAR Compensator. Cuckoo search algorithm is a modern heuristic technique basing Cuckoo species’ parasitic strategy. The L´evy flight has been employed to generate random Cuckoo eggs. Moreover, the objective function is a multiobjective problem, which minimizes loss power, voltage deviation and investment cost of Static VAR Compensator while satisfying other operating constraints in power system. Cuckoo search algorithm is evaluated on three case studies and compared with the Teaching-learning-based optimization, Particle Swarm optimization and Improved Harmony search algorithm. The results show that Cuckoo search algorithm is better than other optimization techniques and its performance is also better.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 2; 59-68
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
B-TREE algorithm complexity analysis to evaluate the feasibility of its application in the university course timetabling problem
Autorzy:
Cruz Chávez, M. A.
Martínez Oropeza, A.
Powiązania:
https://bibliotekanauki.pl/articles/91757.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
B-TREE
algorithm
Binary Search Algorithms
complexity analysis
University Course Timetabling Problem
UCTP
Opis:
This paper presents a comparative analysis of complexity between the B-TREE and the Binary Search Algorithms, both theoretically and experimentally, to evaluate their efficiency in finding overlap of classes for students and teachers in the University Course Timetabling Problem (UCTP). According to the theory, B-TREE Search complexity is lower than Binary Search. The performed experimental tests showed the B-TREE Search Algorithm is more efficient than Binary Search, but only using a dataset larger than 75 students per classroom.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 4; 251-263
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies