Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "recurrent neural network" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network
Autorzy:
Niksa-Rynkiewicz, Tacjana
Szewczuk-Krypa, Natalia
Witkowska, Anna
Cpałka, Krzysztof
Zalasiński, Marcin
Cader, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2031128.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
recurrent neural network
intelligent industrial monitoring
Almeida–Pineda recurrent back-propagation
regenerative heat exchanger
steam power plant
Opis:
Artificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper presents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to similar monitoring applications of other industrial dynamic objects.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 2; 143-155
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An arma type pi-sigma artificial neural network for nonlinear time series forecasting
Autorzy:
Akdeniz, E.
Egrioglu, E.
Bas, E.
Yolcu, U.
Powiązania:
https://bibliotekanauki.pl/articles/91816.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
high order artificial neural networks
pi-sigma neural network, forecasting
recurrent neural network
particle swarm optimization (PSO)
Opis:
Real-life time series have complex and non-linear structures. Artificial Neural Networks have been frequently used in the literature to analyze non-linear time series. High order artificial neural networks, in view of other artificial neural network types, are more adaptable to the data because of their expandable model order. In this paper, a new recurrent architecture for Pi-Sigma artificial neural networks is proposed. A learning algorithm based on particle swarm optimization is also used as a tool for the training of the proposed neural network. The proposed new high order artificial neural network is applied to three real life time series data and also a simulation study is performed for Istanbul Stock Exchange data set.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 121-132
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An optimized parallel implementation of non-iteratively trained recurrent neural networks
Autorzy:
El Zini, Julia
Rizk, Yara
Awad, Mariette
Powiązania:
https://bibliotekanauki.pl/articles/2031147.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
GPU implementation
parallelization
Recurrent Neural Network
RNN
Long-short Term Memory
LSTM
Gated Recurrent Unit
GRU
Extreme Learning Machines
ELM
non-iterative training
Opis:
Recurrent neural networks (RNN) have been successfully applied to various sequential decision-making tasks, natural language processing applications, and time-series predictions. Such networks are usually trained through back-propagation through time (BPTT) which is prohibitively expensive, especially when the length of the time dependencies and the number of hidden neurons increase. To reduce the training time, extreme learning machines (ELMs) have been recently applied to RNN training, reaching a 99% speedup on some applications. Due to its non-iterative nature, ELM training, when parallelized, has the potential to reach higher speedups than BPTT. In this work, we present Opt-PR-ELM, an optimized parallel RNN training algorithm based on ELM that takes advantage of the GPU shared memory and of parallel QR factorization algorithms to efficiently reach optimal solutions. The theoretical analysis of the proposed algorithm is presented on six RNN architectures, including LSTM and GRU, and its performance is empirically tested on ten time-series prediction applications. Opt- PR-ELM is shown to reach up to 461 times speedup over its sequential counterpart and to require up to 20x less time to train than parallel BPTT. Such high speedups over new generation CPUs are extremely crucial in real-time applications and IoT environments.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 1; 33-50
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A class of neuro-computational methods for assamese fricative classification
Autorzy:
Patgiri, C.
Sarma, M.
Sarma, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/91763.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-computational classifier
fricative phonemes
Assamese language
Recurrent Neural Network
RNN
neuro fuzzy classifier
linear prediction cepstral coefficients
LPCC
self-organizing map
SOM
adaptive neuro-fuzzy inference system
ANFIS
klasyfikator neuronowy
klasyfikator neuronowo rozmyty
sieć Kohonena
Opis:
In this work, a class of neuro-computational classifiers are used for classification of fricative phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based classifier is used for classification. Later, another neuro fuzzy classifier is used for classification. We have used two different feature sets for the work, one using the specific acoustic-phonetic characteristics and another temporal attributes using linear prediction cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the experimental details and performance difference obtained by replacing the RNN based classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both the feature sets to recognize Assamese fricative sounds.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 1; 59-70
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal training strategies for locally recurrent neural networks
Autorzy:
Patan, K.
Patan, M.
Powiązania:
https://bibliotekanauki.pl/articles/1396735.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
training schedule
neural network
Fisher information matrix
network parameters
optimal experimental design
convex optimization theory
Opis:
The problem of determining an optimal training schedule for locally recurrent neural network is discussed. Specifically, the proper choice of the most informative measurement data guaranteeing the reliable prediction of neural network response is considered. Based on a scalar measure of performance defined on the Fisher information matrix related to the network parameters, the problem was formulated in terms of optimal experimental design. Then, its solution can be readily achieved via adaptation of effective numerical algorithms based on the convex optimization theory. Finally, some illustrative experiments are provided to verify the presented approach.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 2; 103-114
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method
Autorzy:
Theodoridis, D. C.
Boutalis, Y.S.
Christodoulou, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/91598.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
nonlinear systems
control
neuro-fuzzy dynamical system
fuzzy systems
FS
fuzzy recurrent high order neural network
F-RHONN
adaptive regulator
parameter
“Hopping”
“Modified Hopping”
modeling errors
asymptotic regulation
Opis:
In this paper, we are dealing with the problem of directly regulating unknown multivariable affine in the control nonlinear systems and its robustness analysis. The method employs a new Neuro-Fuzzy Dynamical System definition, which uses the concept of Fuzzy Systems (FS) operating in conjunction with High Order Neural Networks. In this way the unknown plant is modeled by a fuzzy - recurrent high order neural network structure (F-RHONN), which is of the known structure considering the neglected nonlinearities. The development is combined with a sensitivity analysis of the closed loop in the presence of modeling imperfections and provides a comprehensive and rigorous analysis showing that our adaptive regulator can guarantee the convergence of states to zero or at least uniform ultimate boundedness of all signals in the closed loop when a not-necessarily-known modeling error is applied. The existence and boundedness of the control signal is always assured by employing a method of parameter “Hopping” and “Modified Hopping”, which appears in the weight updating laws. Simulations illustrate the potency of the method showing that by following the proposed procedure one can obtain asymptotic regulation despite the presence of modeling errors. Comparisons are also made to simple recurrent high order neural network (RHONN) controllers, showing that our approach is superior to the case of simple RHONN’s.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 1; 59-79
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies