Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sentiment" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
A model of continual and deep learning for aspect based in sentiment analysis
Autorzy:
López, Dionis
Artigas-Fuentes, Fernando
Powiązania:
https://bibliotekanauki.pl/articles/27314219.pdf
Data publikacji:
2023
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
continual learning
deep learning
catas
trophic forgetting
sentiment analysis
Opis:
Sentiment analysis is a useful tool in several social and business contexts. Aspect sentiment classification is a subtask in sentiment analysis that gives information about features or aspects of people, entities, products, or services present in reviews. Different deep learning models that have been proposed to solve aspect sen‐ timent classification focus on a specific domain such as restaurant, hotel, or laptop reviews. However, there are few proposals for creating a single model with high performance in multiple domains. The continual learn‐ ing approach with neural networks has been used to solve aspect classification in multiple domains. However, avoiding low, aspect classification performance in contin‐ ual learning is challenging. As a consequence, potential neural network weight shifts in the learning process in different domains or datasets. In this paper, a novel aspect sentiment classification approach is proposed. Our approach combines a trans‐ former deep learning technique with a continual learning algorithm in different domains. The input layer used is the pretrained model Bidirectional Encoder Representations from Transformers. The experiments show the efficacy of our proposal with 78 % F1‐macro. Our results improve other approaches from the state‐of-the-art.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2023, 17, 1; 3--12
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A dropout predictor system in MOOCs based on neural networks
Autorzy:
Mrhar, Khaoula
Douimi, Otmane
Abik, Mounia
Powiązania:
https://bibliotekanauki.pl/articles/2141902.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
massive open online courses
MOOCs
student attrition
dropout prediction
neural network
sentiment analysis
Opis:
Massive open online courses, MOOCs, are a recent phenomenon that has achieved a tremendous media attention in the online education world. Certainly, the MOOCs have brought interest among the learners (given the number of enrolled learners in these courses). Nevertheless, the rate of dropout in MOOCs is very important. Indeed, a limited number of the enrolled learners complete their courses. The high dropout rate in MOOCs is perceived by the educator’s community as one of the most important problems. It’s related to diverse aspects, such as the motivation of the learners, their expectations and the lack of social interactions. However, to solve this problem, it is necessary to predict the likelihood of dropout in order to propose an appropriate intervention for learners at-risk of dropping out their courses. In this paper, we present a dropout predictor model based on a neural network algorithm and sentiment analysis feature that used the clickstream log and forum post data. Our model achieved an average AUC (Area under the curve) as high as 90% and the model with the feature of the learner’s sentiments analysis attained average increase in AUC of 0.5%.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 4; 72-80
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cloud-based sentiment analysis for measuring customer satisfaction in the Moroccan banking sector using Naïve Bayes and Stanford NLP
Autorzy:
Riadsolh, Anouar
Lasri, Imane
ElBelkacemi, Mourad
Powiązania:
https://bibliotekanauki.pl/articles/2141901.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
Big Data processing
Apache Spark
Apache Kafka
real-time text processing
sentiment analysis
Stanford core NLP
Naïve Bayes classifier
Opis:
In a world where every day we produce 2.5 quintillion bytes of data, sentiment analysis has been a key for making sense of that data. However, to process huge text data in real-time requires building a data processing pipeline in order to minimize the latency to process data streams. In this paper, we explain and evaluate our proposed real-time customer’ sentiment analysis pipeline on the Moroccan banking sector through data from the web and social network using open-source big data tools such as data ingestion using Apache Kafka, In-memory data processing using Apache Spark, Apache HBase for storing tweets and the satisfaction indicator, and ElasticSearch and Kibana for visualization then NodeJS for building a web application. The performance evaluation of Naïve Bayesian model show that for French Tweets the accuracy has reached 76.19% while for English Tweets the result was unsatisfactory and the resulting accuracy is 56%. To remedy this problem, we used the Stanford core NLP which, for English Tweets, reaches a precision of 80.7%.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 4; 64-71
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Customer product review summarization over time for competitive intelligence
Autorzy:
Amarouche, Kamal
Benbrahim, Houda
Kassou, Ismail
Powiązania:
https://bibliotekanauki.pl/articles/950925.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
feature extraction
fuzzy logic
competitive intelligence
opinion mining
opinion summarization
sentiment analysis
SentiWordNet
ekstrakcja cech
logika rozmyta
wywiad konkurencyjny
eksploracja opinii
podsumowanie opinii
analiza nastrojów
Opis:
Nowadays, Customer’s product reviews can be widely found on the Web, be it in personal blogs, forums, or ecommerce websites. They contain important products’ information and therefore became a new data source for competitive intelligence. On that account, these reviews need to be analyzed and summarized in order to help the leader of an entity (company, brand, etc.) to make appropriate decisions in an efective way. However, most previous review summarization studies focus on summarizing sentiment distribution toward different product features without taking into account that the real advantages and disadvantages of a product clarify over time. For this reason, in this work we aim to propose a new system for product opinion summarization which depends on the time when reviews are expressed and that covers the sentiments change about product features. The proposed system firstly, generates a summary based on product features in order to give more accurate and efficient information about different features. secondly, classify the product based on its features in its appropriate class (good, medium or bad product) using a fuzzy logic system. The experimental results demonstrate the effectiveness of the proposed system to generate the real image of a product and its features in reviews.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 4; 70-82
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies