Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieć sztuczna" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Modelowanie wpływu parametrów procesu osadzania powłok na właściwości warstw
Modelling the influence of the parameters of processes on coating properties
Autorzy:
Trzos, M.
Powiązania:
https://bibliotekanauki.pl/articles/258151.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
modelowanie
modele charakterystyk
sztuczna sieć neuronowa
właściwości powłok
modeling
characteristics models
artificial neural network
coatings properties
Opis:
W artykule przedstawiono problemy modelowania wybranych właściwości warstw, otrzymywanych w procesach osadzania powłok metodami PAPVD. Analizie zostały poddane powłoki nanoszone z wykorzystaniem dwóch różnych komercyjnych urządzeń. Technika modelowania została zastosowana w celu opracowania modeli, pozwalających na prognozowanie właściwości warstw na podstawie parametrów procesu osadzania. W procesie modelowania, z zastosowaniem metody sztucznych sieci neuronowych, zostały wykorzystane zbiory danych z eksperymentów badawczych i procesów technologicznych. Przeprowadzone badania pozwoliły na opracowanie modeli tylko dla niektórych z analizowanych charakterystyk, głównie ze względu na występujące niedostatki w zbiorach danych. Wpłynęło to zasadniczo na organicznie możliwości opracowania modeli. Należy jednak podkreślić, że uzyskane w trakcie badań wyniki uzasadniają zastosowanie sieci neuronowych do opisu badanych procesów i budowy modeli prognostycznych.
Some of the properties of coatings deposited with the use of PAPVD methods were described. The research concerns coatings deposited on two different commercial devices. The modelling technique was applied in order to model development that enables the prediction of layer properties based on the deposition parameters. In this research, the method of artificial neural network was applied for modelling, and data from both research experiments and technological processes were used. As the results of modelling show, only some characteristics were well described by models. That problem mainly appeared because of data shortage causing a limitation in modelling. However, research results justify neural network application for describing the analysed processes and the development of prediction models for coating properties.
Źródło:
Problemy Eksploatacji; 2008, 4; 219-230
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikator lokalnych uszkodzeń zębów kół przekładni, wykorzystujący sieci neuronowe MLP oraz ciągłą transformatę falkową
Classifier of fault diagnosis in a gear wheel which used MLP neural network and continuous wavelet transform
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/257799.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
diagnostyka
przekładnia zębata
metoda sztucznej inteligencji
sztuczna sieć neuronowa
MLP
diagnostic testing
toothed gear
artificial intelligent methods
PNN
Opis:
W artykule przedstawiono wyniki prób mających na celu budowę klasyfikatora lokalnych uszkodzeń zębów kół przekładni, opartego na sztucznych sieciach neuronowych. W badaniach wykorzystano sieci neuronowe typu perceptron wielowarstwowy (MLP). Obiekt badań stanowiła przekładnia zębata o zębach prostych, pracująca na stanowisku mocy krążącej FZG. Badaniami objęto przekładnie z kołami bez uszkodzeń oraz z lokalnymi uszkodzeniami zębów w postaci pęknięcia u podstawy zęba i wykruszenia wierzchołka zęba. W artykule zaproponowano budowę deskryptorów lokalnych uszkodzeń zębów kół wykorzystując do tego celu sygnały drganiowe poddane odpowiedniej filtracji oraz przetwarzaniu.
The paper presents the results of an experimental application of an artificial neural network as a classifier of the degree of the cracking root and the chipping tip of the tooth in a gear wheel. The neural classifier was based on the artificial neural network of an MLP type (Multi-Layer Perceptions). The input data for the classifier was in the form of a matrix composed of statistical measures, obtained from continuous wavelet analysis. In order to create a basis of knowledge, a stand testing was done. The experimental tests were conducted in the system operating as circulating power test rigs. As a result, the method of standard construction for diagnostic systems based on artificial intelligence was also worked out by means of defining the ways of filtrating and analysing of signals and diagnostic measurements. Additionally, the choice of the architecture and algorithm of teaching artificial neural networks used to classify the state of an object was researched.
Źródło:
Problemy Eksploatacji; 2007, 4; 61-81
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural networks as a friction classifiers
Sieci neuronowe jako klasyfikatory tarcia
Autorzy:
Gocman, K.
Kałdoński, T.
Powiązania:
https://bibliotekanauki.pl/articles/257827.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
tarcie graniczne
zatarcie
modelowanie procesów tarcia
sztuczna sieć neuronowa
boundary friction
seizure
modelling of friction processes
artificial neural network
Opis:
Preliminary results of the influence of load and rotational speed on the moment of friction and wear of a tribological pair are presented in the paper. Tests were carried out at rotational speeds of about 100-2000 rpm and loads of about 500-6000 N. During the tests, the moment of friction, oil temperature and weather conditions were registered. After the tests, the conditions of the wear of tribological pairs were measured. The analysis of results was developed, and a friction classifier was built using artificial neural networks (ANN). The different training algorithms were applied to obtain the best quality models.
W artykule przedstawiono wstępne wyniki badań wpływu obciążenia i prędkości obrotowej na wartość momentu tarcia i zużycie pary ciernej. Badania przeprowadzono w szerokim zakresie obciążeń (500-6000 N) i prędkości obrotowych (100-2000 obr./min). W czasie pomiarów rejestrowano wartość momentu tarcia, temperaturę środka smarnego oraz warunki otoczenia. Po zakończeniu testów wyznaczono zużycie elementów pary ciernej. Po przeprowadzonej analizie wyników, na bazie sztucznych sieci neuronowych zbudowano klasyfikator tarcia. W czasie budowy modeli zastosowano różne algorytmy uczące, tak aby uzyskać jak najlepszą jakość klasyfikatorów.
Źródło:
Problemy Eksploatacji; 2007, 4; 111-118
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie algorytmów genetycznych do doboru wejść klasyfikatora uszkodzeń zębów kół przekładni opartego na sieci neuronowej PNN oraz krótkoczasowej transformacie Fouriera
The use of genetic algorithms in the task of choosing inputs for PNN neural network classifier of faults of gear-tooth which used inputs from STFT analysis
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/258316.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
diagnostyka
przekładnia zębata
sztuczna inteligencja
sztuczna sieć neuronowa
algorytm genetyczny
krótkoczasowa transformata Fouriera
diagnostic
toothed gear
artificial intelligent method
PNN
genetic algorithm
short-time Fourier transform
Opis:
W artykule przedstawiono wyniki prób mających na celu budowę klasyfikatora lokalnych uszkodzeń zębów kół przekładni, opartego na sztucznych sieciach neuronowych. W badaniach wykorzystywano probabilistyczne sieci neuronowe (PNN). Dodatkowo podjęto próbę wykorzystania algorytmów genetycznych do celów wyboru wejść klasyfikatora neuronowego. Badania oparto na sygnałach drganiowych otrzymanych z modelu dynamicznego przekładni pracującej w układzie napędowym. W artykule zaproponowano sposób budowy deskryptorów lokalnych uszkodzeń zębów kół wykorzystując do tego celu sygnały drganiowe poddane odpowiedniej filtracji oraz przetwarzaniu z użyciem krótkoczasowej transformaty Fouriera (STFT).
The present paper presents the results of an experimental application of probabilistic neural network as a classifier of the degree of cracking root of the tooth in a gear wheel. The input data for the classifier was in a form of matrix composed of statistical measures, obtained from short time Fourier transform. The model of gearbox was used in order to create a base of knowledge. In the experiment genetic algorithms was used to check influence of choosing inputs for neural classifier on diagnostic error.
Źródło:
Problemy Eksploatacji; 2007, 3; 51-70
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The application of the process modelling of anodic wet-stripping of CrN multi-layer coatings for characteristics prediction
Zastosowanie modelowania do prognozowania przebiegu anodowego rozpuszczania złożonych powłok CrN
Autorzy:
Bujak, J.
Ruta, R.
Trzos, M.
Powiązania:
https://bibliotekanauki.pl/articles/256710.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
powłoka CrN
rozpuszczanie anodowe
modelowanie statystyczne
sztuczna sieć neuronowa
model prognostyczny
multi-layer coating
anodic wet-stripping
statistical modelling
artificial neural network
prognostic model
Opis:
The paper presents the results of experimental research on a process of anodic wet-stripping of CrN multi-layer coatings. The stripping rate was correlated with the coating structure and the current density of the stripping process. The experimental data was statistically analysed and regression models of stripping thickness were created as a function of stripping time. The obtained results indicated that the anodic wet-stripping process can be described by means of linear function only in the case of one-layer coatings. Moreover, the general neural network model was created as a complex model including both quantitative and qualitative variables characterising the wet-stripping process. The developed models enable the estimation of the character and time of the stripping process, depending on the coating thickness, structure and current parameters.
W artykule przedstawiono wyniki badań eksperymentalnych anodowego procesu rozpuszczania złożonych powłok CrN. Uzyskane wyniki poddano analizie statystycznej, w rezultacie której wyznaczono modele regresyjne przebiegu procesu rozpuszczania w funkcji czasu. Ponadto wykorzystując sztuczne sieci neuronowe opracowano kompleksowy model procesu rozpuszczania anodowego. Opracowane modele umożliwiają oszacowanie przebiegu i czasu rozpuszczania w zależności od grubości powłoki oraz zastosowanych parametrów prądowych.
Źródło:
Problemy Eksploatacji; 2006, 4; 7-16
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting oil prices
Prognozowanie cen ropy naftowej
Autorzy:
Ejdys, J.
Halicka, K.
Winkowski, C.
Powiązania:
https://bibliotekanauki.pl/articles/256449.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
forecasting
forecast quality
price
crude oil
Holt-Winters model
artificial neural networks
prognozowanie
jakość prognozy
cena
ropa naftowa
model Holta-Wintersa
sztuczna sieć neuronowa
Opis:
The purpose of this article is the use of artificial intelligence methods and exponential smoothing methods to determine the short-term forecast of BRENT oil prices. Another important objective of the research is to conduct a comparative analysis of the quality of the forecasts and make recommendations concerning the constructed forecasting models. Historical data used in this study came from the London Stock Exchange and covered the period from January 2012 to April 2013. The selection of forecasting models was based on the visual decomposition of the time series. The comparative analysis of the quality of the forecasts was carried out, inter alia, on the basis of such measures as mean error (ME), mean absolute error (MAE), root of mean squared error (RMS), mean relative error (MAPE), and the relative error (APE).
Celem niniejszego artykułu jest zastosowanie metod sztucznej inteligencji oraz metod wygładzania wykładniczego do wyznaczenia krótkookresowej prognozy ceny ropy naftowej BRENT. Kolejnym istotnym celem badań jest przeprowadzenie analizy porównawczej jakości otrzymanych prognoz i dokonanie rekomendacji zbudowanych modeli prognostycznych. Dane historyczne wykorzystane w niniejszym badaniu pochodziły z giełdy London Stock Exchange i obejmowały okres od stycznia 2012 r. do kwietnia 2013 r. Wyboru modeli prognostycznych dokonano na podstawie wizualnej dekompozycji szeregu czasowego. Analiza porównawcza jakości otrzymanych prognoz została przeprowadzona między innymi na podstawie takich miar jak średni błąd (ME), średni bezwzględny błąd (MAE), pierwiastek ze średniego kwadratowego błędu (RMS), średni względny błąd (MAPE) oraz względny błąd (APE).
Źródło:
Problemy Eksploatacji; 2014, 1; 5-13
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MLP and SVM classifiers for fault detection
Klasyfikatory neuronowe MLP i SVM dla potrzeb diagnostyki
Autorzy:
Osowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/258282.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
klasyfikatory neuronowe
perceptron wielowarstwowy
MLP
sieć wektorów podtrzymujących
SVM
sztuczna inteligencja
diagnostyka
diagnostic
neural classifier
electrical circuits
Opis:
The paper presents a comparative analysis of two of the most important neural network classifiers: the multilayer perceptron (MLP) and Support Vector Machine (SVM) in application to diagnostic problems. The structure as well as learning algorithms of both networks have been presented and compared. The results of numerical experiments comparing the performance of both classifiers on the artificial and real life problems are presented and discussed.
Praca przedstawia dwa rozwiązania klasyfikatorów neuronowych na potrzeby diagnostyki. Jednym z nich jest perceptron wielowarstwowy (ang. MultiLayer Perceptron - MLP), drugim sieć wektorów podtrzymujących (ang. Support Vector Machine (SVM). Przedstawiono struktury oraz podstawowe metody uczenia takich sieci. Działania obu klasyfikatorów sprawdzono i porównano na problemach testowych, zarówno typu syntetycznego, jak i problemie rzeczywistym rozpoznawania uszkodzeń elementów w rzeczywistym układzie filtru elektrycznego.
Źródło:
Problemy Eksploatacji; 2006, 2; 149-167
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design parameters optimisation of ROPAX ferry using seakeeping characteristics and additional wave resistance
Optymalizacja parametrów projektowych promu pasażersko-samochodowego pod kątem wybranych właściwości morskich i dodatkowego oporu na fali
Autorzy:
Cepowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/257284.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
właściwości morskie
prom ro-ro
kołysanie boczne
przyspieszenie poprzeczne
dodatkowy opór na fali
parametry projektowe
sztuczna sieć neuronowa
optymalizacja wielokryterialna
metoda Pareto
logika rozmyta
sea-keeping
ro-pax ferry
rolling
motion sickness index
additional wave resistance
design parameters
artificial neuron network
optimisation
Pareto method
fuzzy logic
Opis:
This paper presents the multi-criteria design parameters of the optimisation of the ROPAX ferry using sea-keeping characteristics and additional wave resistance. The design criteria were formed using the method based on deterministic scenario and the partial objective functions were determined as artificial neuron networks. The design parameters' optimisation was carried out with the Pareto method. The best design variants were chosen using the elements of fuzzy logic that allowed, among other things, to present design quality with linguistic variables. This approach allowed choosing the best variant concerning all criteria at the same time.
W artykule przeprowadzono wielokryterialną optymalizację parametrów projektowych promu pasażersko-samochodowego pod kątem wybranych właściwości morskich i dodatkowego oporu statku na fali. Kryteria projektowe sformułowano posługując się metodą opartą na scenariuszach deterministycznych, natomiast funkcje celów cząstkowych wyznaczono w postaci sztucznych sieci neuronowych. Optymalizację parametrów projektowych przeprowadzono metodą Pareto. Do wyboru najlepszych wariantów projektowych wykorzystano elementy logiki rozmytej, co pozwoliło m.in. na przedstawienie walorów projektu za pomocą zmiennych lingwistycznych. Takie podejście umożliwiło wybór wariantu najlepszego pod kątem wszystkich kryteriów jednocześnie.
Źródło:
Problemy Eksploatacji; 2008, 2; 149-158
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies