Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hydroliza enzymatyczna" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Synteza γ-laktonów z podstawnikami aromatycznymi
Synthesis of γ-lactones with aromatic substituents
Autorzy:
Skrobiszewski, A.
Gładkowski, W.
Powiązania:
https://bibliotekanauki.pl/articles/171624.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
gamma laktony
pierścienie aromatyczne
reakcja Suzuki-Miyaury
enzymatyczna estryfikacja i hydroliza
mikrobiologiczna redukcja grupy karbonylowej
diastereoselektywne alkilowanie
enancjoselektywne uwodornienie podwójnego wiązania
gamma-lactones
aromatic rings
Suzuki-Miyaura reaction
enzymatic hydrolysis and acetylation
microbial reduction of a carbonyl group diastereoselective alkylation
enantioselective hydrogenation of olefinic substrates
Opis:
Biological activities of lactones are predominantly determined by different substituents on a lactone ring. γ-Lactones with aromatic substituents have interesting biological activities and serve as useful intermediates in the synthesis of many natural and synthetic products. Pulvinic and vulpinic acids exhibit antimicrobial, antioxidant and anticancer activity [1–3]. Paraconic acids have anticancer and antibacterial activity [4, 5]. The interesting biological activities i.a. antileukemic, anti- HIV and cytostatic, have been found for dibenzyl-γ-lactones [8]. This review covers some examples of synthetic and biotechnological methods leading to either racemic or optically active γ-lactones with aromatic substituents. The racemic α-benzylidene lactones can be produced from Baylis-Hillman acetates [9]. The multicomponent synthesis of the paraconic acid analogs is performed by a fourfold metallation-conjugate addition-aldol addition-intramolecular transesterification sequence [4]. Suzuki-Miyaura reaction is the key step in the synthesis of asymmetric pulvinic acids [1]. Some other examples of synthetic strategies involving the reactivity of ylides, vicinal dianions, ozonolysis or Claisen rearrangement are also presented [10–13]. Production of optically active γ-lactones with aromatic substituents involves application of biotechnological and chemical methods. The first one includes using commercially available enzymes [16, 17] or whole cells of microorganisms [18–20]. Chemical methods involve application of chiral starting materials like malic acid esters or the derivatives of succinic acid [14, 15] or chiral catalysts like BINAP-Rh or Ru complexes [7].
Źródło:
Wiadomości Chemiczne; 2013, 67, 9-10; 943-960
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana lipazami. Część 1, Związki prochiralne
Enantioselectve enzymatic desymmetrization catalyzed in the presence of lipase. Part 1, Prochiral compounds
Autorzy:
Kołodziejska, R.
Karczmarska-Wódzka, A.
Tafelska-Kaczmarek, A.
Studzińska, R.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/171684.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
związki prochiralne
desymetryzacja
transestryfikacja
hydroliza
lipazy
prochiral compounds
desymmetrization
transesterification
hydrolysis
lipase
Opis:
In the enzymatic asymmetric synthesis, the enzyme allows the desymmetrization of achiral compounds resulting in chiral compounds of high optical purity. Therefore, this type of biotransformation is known as enantioselective enzymatic desymmetrization (EED) [1–11]. This method is related to the generation of an asymmetry (loss of symmetry elements) in prochiral molecules (most often an sp3 or sp2 hybridized carbon atom), in meso synthones, and centrosymmetric compounds. An achiral center of the tetrahedral system is defined as a prochiral one if it becomes chiral as a result of one of the two substituents replacement which, when separated from the particles, are indistinguishable (Scheme 1, 2) [1–4, 9, 12]. Asymmetric synthesis is enantioselective when one of the enantiotopic groups or faces of an optically inactive compound is biotransformed faster than the other (Scheme 3–5) [1, 10, 11, 13–15]. Lipases are enzymes of highest importance in stereoselective organic synthesis, mainly due to their exceptionally broad substrate tolerance, stability, activity in unphysiological systems, and relatively low price [9, 14]. The mechanism of enzymatic hydrolysis catalysed by hydrolases is similar to that observed in the chemical hydrolysis with the use of base. The selectivity of enzymatic catalysis depends on the substrate orientation in the enzyme active site (Scheme 6, 7) [25–29]. Lipases were successfully used for the desymmetrization of different prochiral diesters, alcohols and amines. Most lipases preferentially convert the same prochiral groups in the above mentioned types of reaction. This allows the preparation of the both enantiomers of the product in high chemical and optical yield (Scheme 9–13) [9, 13, 32–56].
Źródło:
Wiadomości Chemiczne; 2013, 67, 7-8; 751-772
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enancjoselektywna enzymatyczna desymetryzacja katalizowana lipazami. Część II, Optymalizacja warunków reakcji. Związki mezo
Enantioselectve enzymatic desymmetrization catalyzed in the presence of lipase. Part II, Optymalization of reaction conditions. Meso compounds
Autorzy:
Karczmarska-Wódzka, A.
Kołodziejska, R.
Tafelska-Kaczmarek, A.
Przybyła, T.
Dramiński, M.
Powiązania:
https://bibliotekanauki.pl/articles/172192.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
związki mezo
desymetryzacja
transestryfikacja
hydroliza
lipaza
meso compounds
desymmetrization
transesterification
hydrolysis
lipase
Opis:
In the enzymatic asymmetric synthesis, the enzyme allows the desymmetrization of achiral compounds resulting in chiral compounds of high optical purity. Meso compounds (bearing a plane of symmetry) are very important group of compounds used in EEDs (Scheme 1) [1–4]. Similarly to prochiral compounds, selective acylation or hydrolysis of meso substrates leads to optically active products. Most lipases preferentially convert the same enantiomers in the above mentioned types of reaction. This allows the preparation of the both enantiomers of the product in high chemical and optical yield (Scheme 3–20) [35–58]. An effective enzymatic catalysis should be performed under conditions optimal for a biocatalyst performance. Hence, it is essential to select an appropriate reaction medium, the pH, and temperature [6–34]. Optimization of the reaction conditions in terms of an appropriate solvent selection is effective and most frequently the simplest way to modify the enzyme selectivity. One of the most important criteria for the solvent selection is its nature [25]. The enzyme selectivity is conditioned by its conformational rigidity, which increases in more hydrophobic medium (typical hydrophobic solvents, scCO2). A hydrophobic solvent decreases biocatalyst lability, which does not allow the connection between the structurally mismatched substrate and the active side of an enzyme [10, 26–31]. Ionic liquids are a separate group of solvents which, despite their high hydrophobicity (logP << 0) and polarity, can constitute an ideal medium for the biotransformation reactions [18–23].
Źródło:
Wiadomości Chemiczne; 2013, 67, 9-10; 819-841
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies