Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "density topology" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Category theorems concerning Z-density continuous functions
Autorzy:
Ciesielski, K.
Larson, L.
Powiązania:
https://bibliotekanauki.pl/articles/1215085.pdf
Data publikacji:
1991
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
ℑ-density topology
ℑ-density continuous functions
first category sets
Opis:
The ℑ-density topology $T_ℑ$ on ℝ is a refinement of the natural topology. It is a category analogue of the density topology [9, 10]. This paper is concerned with ℑ-density continuous functions, i.e., the real functions that are continuous when the ℑ-density} topology is used on the domain and the range. It is shown that the family $C_ℑ$ of ordinary continuous functions f: [0,1]→ℝ which have at least one point of ℑ-density continuity is a first category subset of C([0,1])= {f: [0,1]→ℝ: f is continuous} equipped with the uniform norm. It is also proved that the class $C_ℑℑ$ of ℑ-density continuous functions, equipped with the topology of uniform convergence, is of first category in itself. These results remain true when the ℑ-density topology is replaced by the deep ℑ-density topology.
Źródło:
Fundamenta Mathematicae; 1991-1992, 140, 1; 79-85
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ramsey, Lebesgue, and Marczewski sets and the Baire property
Autorzy:
Reardon, Patrick
Powiązania:
https://bibliotekanauki.pl/articles/1205503.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Ramsey set
Marczewski set
perfect set
measurable set
Baire property
density topology
Ellentuck topology
σ-algebra
Opis:
We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented.

 THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets.

 THEOREM. In the Ellentuck topology on $[ω]^ω$, $(s)_0$ is a proper subset of the hereditary ideal associated with (s).

 We construct an example in the Ellentuck topology of a set which is first category and measure 0 but which is not $B_r$-measurable. In addition, several theorems concerning perfect sets in the Ellentuck topology are presented. In particular, it is shown that there exist countable perfect sets in the Ellentuck topology.
Źródło:
Fundamenta Mathematicae; 1996, 149, 3; 191-203
0016-2736
Pojawia się w:
Fundamenta Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies