Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "evolutionary programming" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Evolutionary neural-networks based optimisation for short-term load forecasting
Autorzy:
Grzenda, M.
Macukow, B.
Powiązania:
https://bibliotekanauki.pl/articles/206850.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optymalizacja
programowanie ewolucyjne
sieć neuronowa
evolutionary programming
neural networks
optimisation
Opis:
The purpose of short-term load forecasting is to optimise the power supply volume in short time horizon. There is no straightforward mapping rule between the type of time period and the resulting power consumption. Still, it is inevitable for the overall efficiency of the power system to rely on a good prediction model. Our paper illustrates a novel approach based on evolutionary programming. Feedforward networks are being evolved by the ECoMLP method in order to properly solve the optimisation problem, defined as minimisation of the prediction error. All the results have been obtained using the data from the Polish Power System. The data used for the training and tests has been chosen so as to reflect both short-time and long-time dependencies between time period category and load of the system. The primary feature of the described method is a novel self-adaptive procedure that is a part of a sophisticated design algorithm serving to select both network architecture and weight connections. Due to the application of this procedure, no time consuming tests are required to train and retrain neural prediction models. Therefore, the method makes it possible to construct and maintain prediction models for load forecasting without expert knowledge about neural networks.
Źródło:
Control and Cybernetics; 2002, 31, 2; 371-382
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A rule based machine learning approach to the nonlinear multifingered robot gripper problem
Autorzy:
Abu-Zitar, R.
Al-Fahed Nuseirat, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/970099.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
zacisk robota
programowanie ewolucyjne
komputerowe uczenie się
robot gripper
nonlinear complementarity problem (NCP)
Evolutionary Programming (EP)
machine learning
nearest-classifier-algorithm
Opis:
In this paper, we present a novel method that utilizes the accumulation of knowledge in a rule base for solving the nonlinear frictional gripper problem for both the isotropic and orthotropic cases. The knowledge is discovered and accumulated in a rule base with the aid of a genetic based machine learning mechanism. This machine learning mechanism extracts rules for solving the problem with the help of the Evolutionary Programming [EP) algorithm. The retrievals are done using the nearest-classifier-algorithm. This approach provides online solutions for the problem, and establishes a dynamic and evolving environment that adapts with new and sudden changes on the grip specifications or on the external forces. The resulting grasping forces using the presented method are compared with grasping forces obtained using other methods, such as the Complementarity Problems. The proposed online method could update the needed grasping forces to keep firm grip if the configuration of the forces externally applied to the object is changed. Numerical examples that illustrate the proposed method are presented.
Źródło:
Control and Cybernetics; 2005, 34, 2; 553-573
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies