Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "forecasting model" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
A Note on Option Pricing with the Use of Discrete-Time Stochastic Volatility Processes
Autorzy:
Pajor, Anna
Powiązania:
https://bibliotekanauki.pl/articles/483255.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
option pricing
SV model
Bayesian forecasting
Opis:
In this paper we show that in the lognormal discrete-time stochastic volatility model with predictable conditional expected returns, the conditional expected value of the discounted payoff of a European call option is infinite. Our empirical illustration shows that the characteristics of the predictive distributions of the discounted payoffs, obtained using Monte Carlo methods, do not indicate directly that the expected discounted payoffs are infinite.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2009, 1, 1; 71-81
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using VARs and TVP-VARs with Many Macroeconomic Variables
Autorzy:
Koop, Gary
Powiązania:
https://bibliotekanauki.pl/articles/483265.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Bayesian VAR
forecasting
time-varying coefficients
state-space model
Opis:
This paper discusses the challenges faced by the empirical macroeconomist and methods for surmounting them. These challenges arise due to the fact that macroeconometric models potentially include a large number of variables and allow for time variation in parameters. These considerations lead to models which have a large number of parameters to estimate relative to the number of observations. A wide range of approaches are surveyed which aim to overcome the resulting problems. We stress the related themes of prior shrinkage, model averaging and model selection. Subsequently, we consider a particular modelling approach in detail. This involves the use of dynamic model selection methods with large TVP-VARs. A forecasting exercise involving a large US macroeconomic data set illustrates the practicality and empirical success of our approach.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2012, 4, 3; 143-167
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting the distribution of methane concentration levels in mine headings by means of model-based tests and in-situ measurements
Autorzy:
Brodny, Jarosław
Tutak, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/229542.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
CFD
forecasting the distribution of methane
mining heading
in-situ measurements
model tests
Opis:
The methane hazard is one of the most dangerous phenomena in hard coal mining. In a certain range of concentrations, methane is flammable and explosive. Therefore, in order to maintain the continuity of the production process and the safety of work for the crew, various measures are taken to prevent these concentration levels from being exceeded. A significant role in this process is played by the forecasting of methane concentrations in mine headings. This very problem has been the focus of the present article. Based on discrete measurements of methane concentration in mine headings and ventilation parameters, the distribution of methane concentration levels in these headings was forecasted. This process was performed on the basis of model-based tests using the Computational Fluid Dynamics (CFD). The methodology adopted was used to develop a structural model of the region under analysis, for which boundary conditions were adopted on the basis of the measurements results in real-world conditions. The analyses conducted helped to specify the distributions of methane concentrations in the region at hand and determine the anticipated future values of these concentrations. The results obtained from model-based tests were compared with the results of the measurements in real-world conditions. The methodology using the CFD and the results of the tests offer extensive possibilities of their application for effective diagnosis and forecasting of the methane hazard in mine headings.
Źródło:
Archives of Control Sciences; 2019, 29, 1; 25-39
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Construction of the passenger rail traffic generation model
Budowa modelu generacji ruchu kolejowego
Autorzy:
Brzeziński, Andrzej
Waltz, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2174027.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ruch kolejowy
model generacji ruchu
analiza regresyjna
prognozowanie ruchu
ruch pasażerski
railway traffic
traffic model
generation model
regression analysis
traffic forecasting
passenger traffic
Opis:
The article presents a new approach to building a passenger rail traffic generation model. It uses data on the number of passengers at stations and railway stops obtained from the databases of operators on the rail transport market through the Office of Rail Transport - market regulator - combined with data on the model of the area around the station built based on population, number of beds, individual motorization and gross domestic product (GDP). This enabled analyzing the potential of railway traffic generation at a very detailed level. The article presents a methodology for building a passenger rail traffic generation model and verification of this model based on limited variables describing railway stations and stops as well as traffic zones and available statistical data. The model takes into account three segments of the railway market: regional, interregional and inter-agglomeration transport. The results of these analyzes can be used to increase the accuracy and the reliability of rail traffic models used in the analysis of transport networks.
W artykule przedstawiono nowe podejście do budowy modelu generacji pasażerskiego ruchu kolejowego. Przedstawiono propozycję metodyki budowy modelu generacji pasażerskiego ruchu kolejowego oraz weryfikacji tego modelu w oparciu o ograniczone zmienne opisujące stacje i przystanki kolejowe oraz rejony komunikacyjne i dostępne dane statystyczne. Wykorzystano w nim dane o liczbie pasażerów na stacjach i przystankach kolejowych w połączeniu z danymi opisującymi model obszaru wokół stacji budowany w oparciu o liczbę ludności, liczbę miejsc noclegowych, motoryzację indywidualną i produkt krajowy brutto (PKB).Wykorzystanie tych danych umożliwiło przeprowadzenie analizy potencjału generacji ruchu kolejowego na dużym poziomie szczegółowości. W metodzie uwzględniono trzy segmenty rynku kolejowego: przewozy regionalne, międzyregionalne i międzyaglomeracyjne.
Źródło:
Archives of Civil Engineering; 2022, 68, 3; 107--123
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
City Backbone Network Traffic Forecasting
Autorzy:
Serikov, Tansaule
Zhetpisbayeva, Ainur
Аkhmediyarova, Аinur
Mirzakulova, Sharafat
Aigerim, Kismanova
Tolegenova, Aray
Wójcik, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/1844529.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
time series
packet intensity
Dickey-Fuller test
Kwiatkowski-Phillips-Perron-Shin-Schmitt test
forecasting
integrated moving average autoregression model
Opis:
The work considers a one-dimensional time series protocol packet intensity, measured on the city backbone network. The intensity of the series is uneven. Scattering diagrams are constructed. The Dickie Fuller test and Kwiatkowski-Phillips Perron-Shin-Schmitt test were applied to determine the initial series to the class of stationary or non-stationary series. Both tests confirmed the involvement of the original series in the class of differential stationary. Based on the Dickie Fuller test and Private autocorrelation function graphs, the Integrated Moving Average Autoregression Model model is created. The results of forecasting network traffic showed the adequacy of the selected model.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 3; 319-324
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatiotemporal attention mechanism-based multistep traffic volume prediction model for highway toll stations
Autorzy:
Huang, Zijing
Lin, Peiqun
Lin, Xukun
Zhou, Chuhao
Huang, Tongge
Powiązania:
https://bibliotekanauki.pl/articles/2124715.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ITS
traffic volume forecasting
attention mechanism
highway toll station
model interpretation
natężenia ruchu
prognozowanie
mechanizm uwagi
stacja poboru opłat
Opis:
As the fundamental part of other Intelligent Transportation Systems (ITS) applications, short-term traffic volume prediction plays an important role in various intelligent transportation tasks, such as traffic management, traffic signal control and route planning. Although Neural-network-based traffic prediction methods can produce good results, most of the models can’t be explained in an intuitive way. In this paper, we not only proposed a model that increase the short-term prediction accuracy of the traffic volume, but also improved the interpretability of the model by analyzing the internal attention score learnt by the model. we propose a spatiotemporal attention mechanism-based multistep traffic volume prediction model (SAMM). Inside the model, an LSTM-based Encoder-Decoder network with a hybrid attention mechanism is introduced, which consists of spatial attention and temporal attention. In the first level, the local and global spatial attention mechanisms considering the micro traffic evolution and macro pattern similarity, respectively, are applied to capture and amplify the features from the highly correlated entrance stations. In the second level, a temporal attention mechanism is employed to amplify the features from the time steps captured as contributing more to the future exit volume. Considering the time-dependent characteristics and the continuity of the recent evolutionary traffic volume trend, the timestamp features and historical exit volume series of target stations are included as the external inputs. An experiment is conducted using data from the highway toll collection system of Guangdong Province, China. By extracting and analyzing the weights of the spatial and temporal attention layers, the contributions of the intermediate parameters are revealed and explained with knowledge acquired by historical statistics. The results show that the proposed model outperforms the state-of-the-art model by 29.51% in terms of MSE, 13.93% in terms of MAE, and 5.69% in terms of MAPE. The effectiveness of the Encoder-Decoder framework and the attention mechanism are also verified.
Źródło:
Archives of Transport; 2022, 61, 1; 21--38
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies